Website is intended for physicians
Search:

 

Abstract:

Lipid core coronary plaques (LCPs), which cannot be reliably detected by conventional diagnostic measures, are widely considered to be the cause of most acute coronary syndromes. Accumulating evidence also indicates that LCPs may increase the risk of stenting complications. A catheter-based near-infrared spectroscopy (NIRS) system is now available for the detection of LCPs in the arteries of patients undergoing coronary angiography The system, which uses the well-documented ability of NIRS to determine the chemical composition of unknown substances, has been validated in an autopsy study and a clinical trial. The system has now been used in more than 300 patients and has provided novel information for use in assessment of coronary disease. Multiple studies are in progress to assess the full clinical benefit of NIRS for the goals of 1) improving the safety of stenting, 2) preventing a second coronary event in patients with known coronary disease, and 3) use as a possible component in a strategy for the primary prevention of coronary events.
 

 

References 

 

1.      Lloyd-Jones D., Adams R., Carnethon M. et al. Heart disease and stroke statistics-2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009; 119:480-486.

 

 

2.      Clarke M.C., Figg N., Maguire J.J. et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 2006; 12:1075-1080.

 

 

3.      Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med 1999, 340:115-126.

 

 

4.      Kagan A., Livsic A.M., Sternby N., Vihert A.M. Coronary-artery thrombosis and the acute attack of coronary heart-disease. Lancet 1968; 2:1199-1200.

 

 

5.      Goldsteinc J.A. CT angiography: imaging anatomy to deduce coronary physiology. Catheter Cardiovasc Interv 2009; 73:503-505.

 

 

6.      Giroud D., Li J.M., Urban P., et al. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol 1992; 69:729-732.

 

 

7.      Gonzalo N., GarcHa-GarcHa H.M., Ligthart J. et al. Coronary plaque composition as assessed by greyscale intravascular ultrasound and radiofrequency spectral data analysis. Int J Cardiova,sc Imaging 2008; 24:811-818.

 

 

8.      Schaar J.A., Mastik F., Regar E., et al. Current diagnostic modalities for vulnerable plaque detection. Curr Pharm Des 2007; 13:995-1001.

 

 

9.      Kips J.G., Segers P, Van Bortel L.M. Identifying the vulnerable plaque: a review of invasive and non-invasive imaging modalities. Artery Res 2008; 2:21-34.

 

 

10.    Uchida Y., Nakamura F., Tomaru T., et al. Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am. Heart J. 1995; 130:195-203.

 

 

11.    Ohtani T., Ueda Y., Mizote I., et al. Number of yellow plaques detected in a coronary artery is associated with future risk of acute coronary syndrome detection of vulnerable patients by angioscopy. J Am Coll Cardiol 2006; 47:2194-2200.

 

 

12.    Ishibashi F., Aziz K., Abela G., Waxman S. Update on coronary angioscopy: review of a 20-year experience and potential application for detection of vulnerable plaque. J. Interv. Cardiol. 2006; 19:17-25.

 

 

13.    Patel N.A., Stamper D.L., Brezinski M.E. Review of the ability of optical coherence tomography to characterize plaque, including a comparison with intravascular ultrasound. Cardiovasc Intervent Radiol 2005; 28:1-9.

 

 

14.    Yabushita H., Bouma B.E., Houser S.L., et al.Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106:1640-1645.

 

 

15.    Tearney G.J., Yabushita H., Houser S.L., et al. Quantifi cation of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003; 107:113-119.

 

 

16.    Yun S.H., Tearney G.J., Vakoc B.J. et al. Comprehensive volumetric optical microscopy in vivo. Nat Med 2007; 12:1429-1433.

 

 

17.    Lavine B., Workman J. Chemometrics. Ana,l Chem 2008, 80:4519-4531.

 

 

18.    Williams P., Norris K. Near-Infrared Technology in the Agriculture and Food Industries, edn 2. St. Paul, MN: American

 

 

19.    Association of Cereal Chemists Inc.; 2001; Ciurczak EW, Drennen JK: Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy. New York: Marcel Dekker, 2002;

 

 

20.    Mendelson Y: Pulse oximetry: theory and applications for noninvasive monitoring. Clin Chem 1992; 38:1601-1607.

 

 

21.    Moreno PR., Muller J.E.: Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods. Curr Opin Cardiol 2002; 17:638-647.

 

 

22.    Lodder R.A., Cassis L., Ciurczak E.W.: Arterial analysis with a novel near-IR fi ber-optic probe. Spectroscopy 1990; 5:12-17.

 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы