Website is intended for physicians
Search:

 

Abstract:

Aim: was to evaluate the efficacy of MSCT in assessment of long-term graft patency after coronary artery bypass graft surgery (CABG).

Material and methods: 25 patients with multi-vessel coronary artery disease were included in the research. To assess the 5-year graft patency, MSCT arteriography was performed.

Results: a total of 96 grafts (22 left internal thoracic artery (LITA) and 74 saphenous venous grafts (SVG)) were analyzed using MSCT There were 12 venous sequential grafts and 19 venous Y-shaped grafts determined. During the assessment of graft patency, 13 occlusions of venous grafts and 1 hemodynamically significant stenosis were detected. Occlusion and hemodynamically significant stenosis of mammary grafts were not observed.

Conclusion: MSCT arteriography, allows to determine occlusive and hemodynamically significant stenoses of SVG. Results of study shows the prevalence of SVG occlusions and stenosis over arterial grafts. CT angiography can be highly informative for assessing the patency of grafts in late periods after CABG. 

 

References

1.      Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1, 388 patients during 25 years. J Am Coll Cardiol. 1996; 28: 616-626.

2.      Loop FD, Lytle BW, Cosgrove DM, Stewart RW, Goormastic M, Williams GW, Golding LA, Gill CC, Taylor PC, Sheldon WC. Influence of the internal mammary artery graft on 10-year survival and other cardiac events. N Engl J Med 1986; 314: 1-6.

3.      Ropers D, Pohle FK, Kuettner A, Pflederer T, Anders K, Daniel WG, Bautz W, Baum U, Achenbach S. Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation. 2006;114: 2334-2341.

4.      Dikkers R, Willems TP, Tio RA, Anthonio RL, Zijlstra F, Oudkerk M. The benefit of 64-MDCT prior to invasive coronary angiography in symptomatic post-CABG patients. Int J Cardiovasc Imaging. 2007; 23(3): 369-377.

5.      Lee R, Lim J, Kaw G, Wan G, Ng K, Ho KT. Comprehensive noninvasive evaluation of bypass grafts and native coronary arteries in patients after coronary bypass surgery: accuracy of 64-slice multidetector computed tomography compared to invasive coronary angiography. J Cardiovasc Med (Hagerstown). 2010; 11(2): 81-90.

6.      Laynez-Carnicero A, Estornell-Erill J, Trigo-Bautista A, Valle-Mutz A, Nadal-Barangй M, Romaguera-Torres R, Planas del Viejo A, Corb-Pascual M, Payб-Ser- rano R, Ridocci-Soriano F. Non-invasive assessment of coronary artery bypasss grafts and native coronary arteries using 64-slice computed tomography: comparison with invasive coronary angiography. Revista espanola de cardiologia. 2010; 63(2): 161-169.

7.      Heye T, Kauczor HU, Szabo G, Hosch W. Computed tomography angiography of coronary artery bypass grafts: robustness in emergency and clinical routine settings. Acta Radiol. 2014; 55(2): 161-170.

8.      Bourassa MG. Fate of venous grafts: the past, the present and the future. J Am Coll Cardiol. 1991; 5: 1081-1083.

9.      Nikonov ME. Possibilities of multispiral computed tomography in assessing the patency of coronary grafts in early and late periods in patients undergoing aortic and mammarocoronary bypass graft surgery. REJR. 2013; 3 (1): 18-27 [In Russ].

10.    ACC/AHA/ACP — ASIM Practice guidlines. ACC/AHA/ACP — ASIM Guidelines for the management of patients with chronic stable angina. Am Coll Cardiac. 1999; 33(7): 2092-2097.

11.    Tochii M, Takagi Y Anno H, Hoshino R, Akita K, Kondo H, Ando M. Accuracy of 64-slice multidetector computed tomography for diseased coronary artery graft detection. Annals of Thoracic Surgery. 2010; 89(6): 1906-1911.

12.    Shimanovsky NL. Safety of iodine-containing radiopaque agents in the light of new recommendations from international associations of experts and clinicians. REJR. 2012; 2 (1): 12-19 [In Russ].

13.    Campbell PG, Teo KS, Worthley SG, Kearney MT, Tarique A, Natarajan A, Zaman AG. Non-invasive assessment of saphenous vein graft patency in asymptomatic patients. Br J Radiol. 2009 Apr; 82(976):291-5. doi: 10.1259/bjr/19829466.

14.    Frazier AA, Qureshi F, Read KM, Gilkeson RC, Poston RS, White CS. Coronary artery bypass grafts: assessment with multidetector CT in the early and late postoperative settings. Radiographics. 2005 Jul-Aug; 25(4): 881-896. Review.

15.    Tinica G, Chistol RO, Enache M, Leon Constantin MM, Ciocoiu M, Furnica C. Long-term graft patency after coronary artery bypass grafting: Effects of morphological and pathophysiological factors. Anatol J Cardiol. 2018 Nov;20(5):275-282. doi: 10.14744/AnatolJCardiol.2018. 51447.

16.    Drouin A, Noiseux N, Chartrand-Lefebvre C, Soulez G, Mansour S, Tremblay JA, Basile F, Prieto I, Stevens LM. Composite versus conventional coronary artery bypass grafting strategy for the anterolateral territory: study protocol for a randomized controlled trial. Trials. 2013 Aug 26; 14: 270. doi: 10.1186/1745-6215-14270.

17.    Deb S, Cohen EA, Singh SK, Une D, Laupacis A, Fremes SE RAPS Investigators. Radial artery and saphenous vein patency more than 5 years after coronary artery bypass surgery: results from RAPS (Radial Artery Patency Study). J Am Coll Cardiol. 2012 Jul 3;60(1):28-35. doi: 10.1016/j.jacc.2012.03.037.

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы