Website is intended for physicians
Search:
Всего найдено: 19

Abstract:

Introduction: treatment of patients with bilobar metastatic liver disease remains an unsolved problem. Among methods of regional chemotherapy, the least studied is isolated liver chemoperfusion, which is an unpopular technique due to its high trauma and difficult reproducibility.

Aim: was to demonstrate the method of endovascular isolated liver chemoperfusion (EILHP) developed by us.

Case report: EILCP was performed using a heart-lung machine (HLM) in a patient with cancer of the rectum, stage 2 (pT3N0M0), after combined treatment (radiation therapy (SOD 60 Gy) + anterior resection of the rectum in 2007). Disease progression. Isolated metastatic liver disease (01.2021). Isolated chemoperfusion was performed endovascularly using 2-balloon catheters, which provided vascular isolation of the liver and its isolated perfusion during the procedure. Posi- tioning of balloon catheters was performed in an open way through femoral artery and vein. Perfusion was carried out for 30 minutes with chemotherapy drugs (CtD) oxaliplatin 42,5 mg/m2 and irinotecan 82,5 mg/m2 injected directly into the circuit.

Results: the duration of intervention was 160 minutes, intraoperative blood loss was 50 ml. During insertion and positioning of aortic balloon, a limited dissection of the aorta developed in area of left common iliac artery deviation, which did not require any intervention in postoperative period. Duration of intensive care unit stay was 1 day. There were no complications associated with aortic dissection during 3-month follow-up. Level of ALT and AST remained within reference values during entire postoperative period. No hematological toxicity was observed. Patient was discharged on the 7th day after operation in satisfactory condition.

Patient underwent control CT scan of abdominal organs, 30 days after endovascular isolated chemoperfusion of the liver. According to the RECIST scale, stabilization of tumor process was noted.

Conclusions: proposed technique of endovascular isolated liver chemoperfusion is technically feasible and safe. The use of this method may be appropriate in treatment of patients with isolated liver metastases who require dose reduction of chemotherapeutic agents due to their severe toxicity or high patient comorbidity.

 

Abstract:

Patients with suspected peripheral artery disease (PAD) with critical limb ischemia (CLI) require intervention for limb salvage. Successful revascularization depends on quality and accurate visualization of vascular bed of lower limbs. Recent advances in imaging technology have significantly impacted the preoperative assessment of patients with PAD. The following is a description of main invasive techniques of obtaining high-quality images of arteries of lower limbs.

Aim: was to summarize data of modern literature sources, on the effectiveness of modern instrumental diagnostic methods for early and effective invasive assessment of blood flow and perfusion of lower limbs for planning revascularization interventions and assessing its effectiveness.

Material and methods: we analyzed sources of Russian and foreign literature over the past 5 years on the issue of modern possibilities of invasive diagnosis of critical lower limb ischemia. When choosing sources, we relied on the information content of described methods, the relevance of research, results of which are being applied today, and outlined prospects for their application in the future.

Conclusions: over the years, digital subtraction angiography has been traditionally the «gold standard» for intravascular imaging of lower limbs. Over time, this method has been improved because technological advances have created high-quality alternatives for preoperative (computed tomography [CT] angiography and magnetic resonance angiography [MRA]) and intraoperative imaging (Vascular Flow Reserve [VFR], intravascular ultrasound [IVUS], optical coherence tomography [OCT] and angiography CO2).

 

 

Abstract:

Introduction: treatment of patients with primary malignant neoplasms (PMN) of head and neck remains an unsolved problem. About 70% of neoplasms are unresectable, and one-year mortality rate reaches 90%.

Aim: was to demonstrate possibilities of using the technique of isolated chemoperfusion of head and neck (ICPHN) developed by us in the experiment.

Material and methods: ICPHN was performed using the method of extracorporeal membrane oxygenation (ECMO) on two non-human primates (hamadryas baboons), 20 kg males, 12–14 years old. The open version of intervention involved performing sternotomy, cannulation of brachiocephalic arteries (BCA) and superior vena cava (SVC) with their subsequent clamping after starting parallel ECMO. The endovascular version was made by overlapping the BCA and SVC with transfemorally inserted balloon catheters. Cannulation for ECMO was performed percutaneously through the axillary artery and vein. Perfusion was carried out for 30 minutes with a chemotherapy (CP) drug carboplatin at a dose of 150 mg injected immediately into the circuit.

Results: both procedures were carried out successfully with good immediate and long-term (30 days of follow-up) results. After 10, 20 and 30 minutes from the moment of CP injection into the isolated circuit, its content in the circuit was 7-10 times, 3-3,5 times and 4-4,5 times exceeding the concentration in the systemic circulation, respectively. During the perioperative period, vital functions and laboratory parameters were within normal limits. No complications associated with both procedures were observed. All animals quickly recovered from anesthesia without signs of neurological disorders.

Conclusions: the use of isolated chemoperfusion of head and neck with carboplatin in the experiment is feasible and safe. In the head and neck contour, the concentration of CP is observed, 3-5 times higher than in the systemic circulation, and that allows a more pronounced targeted effect on tumor. Taking into account the minimally invasiveness and repeatability of the procedure, the use of endovascular isolated chemoperfusion of head and neck is more promising.

 

 

References

 

1.     Vleeschouwer SD. Glioblastoma. Brisbane. Codon Publications. 2017; 678.

2.     Maghami E. Multidisciplinary Care of the head and neck cancer patient. Springer International Publishing. 2018; 282.

3.     Srinivasan VM, Lang FF, Chen SR, et al. Advances in endovascular neuro-oncology: endovascular selective intra-arterial (ESIA) infusion of targeted biologic therapy for brain tumors. J Neurointerv Surg. 2020; 12(2): 197-203.

4.     Newton HB. Intra-arterial chemotherapy of primary brain tumors. Curr Treat Options Oncol. 2005; 6(6): 519-530.

5.     Klopp CT, Alford TG, Bateman J, et al. Fractionated intra-arterial chemotherapy with methyl bis amine hydrochloride; a preliminary report. Ann Surg. 1950; 4: 811-832.

6.     Creech O, Krementz ET, Ryan RF, et al. Chemotherapy of сancer: regional perfusion utilizing an extracorporeal circuit. Ann Surg. 1958; 4: 616-632.

7.     Woodhall B, Hall K, Mahaley S, et. al. Chemotherapy of brain cancer: experimental and clinical studies in localized hypothermic perfusion. Ann Surg. 1959; 4: 640-651.

8.     Feind CR, Herter F, Markowitz A. Improvements in isolation head perfusion. Am J Surg. 1963; 5: 777-782.

 

Abstract:

Introduction: basilar artery thrombosis (BAT) is the cause of about 1% of ischemic strokes (IS). About 27% of strokes in posterior circulation are associated with BAT. Mortality in BAT without recanalization reaches 85-95%. In 80.7% of patients with BAT at the onset of disease a decrease in level of consciousness is observed, in 34% of them – coma.

Aim: was to show the possibility of performing thrombectomy (TE) in patients with BAT and reduced level of consciousness as the only effective way to prevent death in this pathology.

Materials and methods: two case reports of successful TE from basilar artery in patients with IS and decrease in level of wakefulness to coma, are presented.

Results: article describes two successful cases of TE in patients with angiographically confirmed BAT and decrease in the level of consciousness to moderate coma at the onset of disease. In two presented patients, TE made a complete restoration of BA blood flow. Good clinical outcomes were noted in both patients by 90th day of disease (modified Rankin scale 0-2 points). The Rivermead mobility index at discharge from hospital was 14 points, and the Bartel index by 90th day – complete independence from others in everyday life (from 90 to 100 points), and that once again indicates that TE in BAT is not only a life-saving procedure, but significantly improves functional and clinical outcomes of disease.

Conclusions: basilar artery thrombosis is a life-threatening condition that requires urgent reperfusion therapy as the only effective method of treatment. Endovascular treatment for basilar artery thrombosis should be considered in all patients, regardless the decrease in the level of consciousness at the onset of disease, because thrombectomy is a life-saving procedure.

  

 

References 

1.     Reinemeyer NE, Tadi P, Lui F. Basilar Artery Thrombosis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; January 31, 2021. Available at:

https://www.ncbi.nlm.nih.gov/books/NBK532241/

2.     Ekker MS, Boot EM, Singhal AB, et al. Epidemiology, aetiology, and management of ischaemic stroke in young adults. Lancet Neurol. 2018; 17(9): 790-801.

https://doi.org/10.1016/S1474-4422(18)30233-3

3.     Ikram A, Zafar A. Basilar Artery Infarct. In: StatPearls. Treasure Island (FL): StatPearls Publishing; August 10, 2020. Available at:

https://www.ncbi.nlm.nih.gov/books/NBK551854/

4.     Gory B, Mazighi M, Labreuche J, et al. Predictors for Mortality after Mechanical Thrombectomy of Acute Basilar Artery Occlusion. Cerebrovasc Dis. 2018; 45(1-2): 61-67.

https://doi.org/10.1159/000486690

5.     Writing Group for the BASILAR Group, Zi W, Qiu Z, et al. Assessment of Endovascular Treatment for Acute Basilar Artery Occlusion via a Nationwide Prospective Registry. JAMA Neurol. 2020; 77(5): 561-573.

https://doi.org/10.1001/jamaneurol.2020.0156

6.     Bracard S, Ducrocq X, Mas JL, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol. 2016; 15(11): 1138-1147.

https://doi.org/10.1016/S1474-4422(16)30177-6

7.     Liu Z, Liebeskind DS. Basilar Artery Occlusion and Emerging Treatments. Semin Neurol. 2021; 41(1): 39-45.

https://doi.org/10.1055/s-0040-1722638

8.     Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2019; 50(12): 344-418.

https://doi.org/10.1161/STR.0000000000000211

9.     Baik SH, Park HJ, Kim JH, et al. Mechanical Thrombectomy in Subtypes of Basilar Artery Occlusion: Relationship to Recanalization Rate and Clinical Outcome. Radiology. 2019; 291(3): 730-737.

https://doi.org/10.1148/radiol.2019181924

10.   Weber R, Minnerup J, Nordmeyer H, et al. Thrombectomy in posterior circulation stroke: differences in procedures and outcome compared to anterior circulation stroke in the prospective multicentre REVASK registry. Eur J Neurol. 2019; 26(2): 299-305.

https://doi.org/10.1111/ene.13809

11.   Kang DH, Jung C, Yoon W, et al. Endovascular Thrombectomy for Acute Basilar Artery Occlusion: A Multicenter Retrospective Observational Study. J Am Heart Assoc. 2018; 7(14): 009419.

https://doi.org/10.1161/JAHA.118.009419

12.   Liu X, Dai Q, Ye R, et al. Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): an open-label, randomised controlled trial. Lancet Neurol. 2020; 19(2): 115-122.

https://doi.org/10.1016/S1474-4422(19)30395-3

13.   Potter JK, Clemente JD, Asimos AW. Hyperdense basilar artery identified on unenhanced head CT in three cases of pediatric basilar artery occlusion. Am J Emerg Med. 2021; 42: 221-224.

https://doi.org/10.1016/j.ajem.2020.11.055

 

Abstract:

Introduction: up to the present day, there were no published multicenter randomized researches, that could compare combined concept of thrombectomy, including different methods of stent-retrievers traction with elements of aspiration and thrombolysis. There is no data on the effect of embolic complications after extraction of thrombus from cerebral arteries on outcomes of treatment.

Aim: was to increase the effectiveness of treatment of patients with ischemic stroke basing on a comparison of results of various methods of endovascular thrombectomy from cerebral vessels and intravenous thrombolysis, and on the base of assessment of effect of distal embolism on treatment outcomes in acute period of ischemic stroke.

Materials and methods: we carried out statistical analysis of results of different methods of thrombectomy in 75 patients and intravenous thrombolysis in 75 patients in acute phase of ischemic stroke. Effect of embolic complications after thrombectomy on outcomes of treatment of ischemic stroke was determined.

Results: groups of patients were comparable in age, neurological deficit, sex, localization and stroke subtype. The first group is burdened by the proportion of documented cerebral artery occlusion, diabetes mellitus and ischemic stroke in anamnesis. Differences in deaths and disability rates were not reliable. Thrombectomy demonstrated neurological deficit regression at all evaluation intervals, as well as the superiority of 2 times at achievement of functionally independent outcome in comparison with intravenous thrombolysis group.

Conclusions: a concept to thrombectomy, that supposes different methods of use of stent-retrievers and aspiration demonstrates better functional outcomes in treatment of ischemic stroke in the acute phase compared with intravenous thrombolysis. Embolic complications of reperfusion treatment adversely affect ischemic stroke outcomes and should be considered as a factor requiring minimization.

 

References

1.     Domashenko MA, Maksimova MY, Gafarova ME et al. The personification of reperfusion therapy approaches for ischemic stroke. Annals of Clinical and Experimental Neurology. 2017;11(1):7-13 [In Russ].

2.     Powers W, Rabinstein A, Ackerson T et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2018; 49(3):e46-e99.

https://doi.org/10.1161/STR.0000000000000158

3.     Sandercock P, Wardlaw JM, Lindley RI et al.; IST-3 collaborative group. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. The Lancet. 2012;379(9834):2352-2363.

https://doi.org/10.1016/S0140-6736(12)60768-5

4.     Riedel C, Zimmermann P, Jensen-Kondering U et al. The Importance of Size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;42(6):1775-1777.

https://doi.org/10.1161/STROKEAHA.110.609693

5.     Kharitonova T, Ahmed N, Thoren M et al. Hyperdense Middle Cerebral Artery Sign on Admission CT Scan – Prognostic Significance for Ischaemic Stroke Patients Treated with Intravenous Thrombolysis in the Safe Implementation of Thrombolysis in Stroke International Stroke Thrombolysis Register. Cerebrovascular Diseases. 2008;27(1): 51-59.

https://doi.org/10.1159/000172634

6.     Thomalla G, Kruetzelmann A, Siemonsen S et al. Clinical and Tissue Response to Intravenous Thrombolysis in Tandem Internal Carotid Artery/Middle Cerebral Artery Occlusion. Stroke. 2008;39(5):1616-1618.

https://doi.org/10.1161/STROKEAHA.107.504951

7.     Turc G, Bhogal P, Fischer U et al. European Stroke Organisation (ESO) – European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischemic stroke. Journal of NeuroInterventional Surgery. 2019;11(6):535-538.

https://doi.org/10.1136/neurintsurg-2018-014568

8.     Fransen P, Berkhemer O, Lingsma H et al. Time to Reperfusion and Treatment Effect for Acute Ischemic Stroke: A Randomized Clinical Trial. JAMA Neurology. 2016;73(2):190-196.

https://doi.org/10.1001/jamaneurol.2015.3886

9.     Goyal M, Demchuk A, Menon B et al. Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke. New England Journal of Medicine. 2015;372(11): 1019-1030.

https://doi.org/10.1056/NEJMoa1414905

10.   Campbell B, Mitchell P, Kleinig T et al. Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection. New England Journal of Medicine. 2015;372(11): 1009-1018.

https://doi.org/10.1056/NEJMoa1414792

11.   Bracard S, Ducrocq X, Mas J et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. The Lancet Neurology. 2016;15(11):1138-1147.

https://doi.org/10.1016/S1474-4422(16)30177-6

12.   Jovin T, Chamorro A, Cobo E et al. Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke. New England Journal of Medicine. 2015;372(24):2296-2306.

https://doi.org/10.1056/NEJMoa1503780

13.   Muir K, Ford G, Messow C et al. Endovascular therapy for acute ischaemic stroke: the Pragmatic Ischaemic Stroke Thrombectomy Evaluation (PISTE) randomised, controlled trial. Journal of Neurology, Neurosurgery & Psychiatry. 2016;88(1):38-44.

https://doi.org/10.1136/jnnp-2016-314117

14.   Saver J, Goyal M, Bonafe A et al. Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke. New England Journal of Medicine. 2015;372(24):2285-2295.

https://doi.org/10.1056/NEJMoa1415061

15.   McCarthy D, Diaz A, Sheinberg D et al. Long-Term Outcomes of Mechanical Thrombectomy for Stroke: A Meta-Analysis. The Scientific World Journal. 2019; 2019:1-9.

https://doi.org/10.1155/2019/7403104

16.   Logvinenko RL, Domashenko MA, Frantsevich AM et al. Choice of reperfusion strategy in acute period of ischemic stroke. Journal Diagnostic & interventional radiology. 2018;12(2):77-84 [In Russ].

17.   Semitko SP, Analeev AI, Azarov AV et al. Results of primary endovascular treatment of patients with acute ischemic stroke and high risk or contraindication for thrombolytic therapy. Journal Diagnostic & interventional radiology. 2018;12(4):52-58. [In Russ]

18.   Kang D, Kim B, Heo J et al. Effect of balloon guide catheter utilization on contact aspiration thrombectomy. Journal of Neurosurgery. 2018;1-7.

https://doi.org/10.3171/2018.6.JNS181045

19.   Maegerlein C, Monch S, Boeckh-Behrens T et al. PROTECT: PRoximal balloon Occlusion TogEther with direCt Thrombus aspiration during stent retriever thrombectomy – evaluation of a double embolic protection approach in endovascular stroke treatment. Journal of NeuroInterventional Surgery. 2017;10(8):751-755.

https://doi.org/10.1136/neurintsurg-2017-013558

20.   Goto S, Ohshima T, Ishikawa K et al. A Stent-Retrieving into an Aspiration Catheter with Proximal Balloon (ASAP) Technique: A Technique of Mechanical Thrombectomy. World Neurosurgery. 2018;109:e468-e475.

https://doi.org/10.1016/j.wneu.2017.10.004

21.   Lee D, Sung J, Kim S et al. Effective use of balloon guide catheters in reducing incidence of mechanical thrombectomy related distal embolization. Acta Neurochirurgica. 2017;159(9):1671-1677.

https://doi.org/10.1007/s00701-017-3256-3

22.   Stampfl S, Pfaff J, Herweh C et al. Combined proximal balloon occlusion and distal aspiration: a new approach to prevent distal embolization during neurothrombectomy. Journal of NeuroInterventional Surgery. 2016;9(4):346-351.

https://doi.org/10.1136/neurintsurg-2015-012208

23.   Maus V, Behme D, Kabbasch C et al. Maximizing First-Pass Complete Reperfusion with SAVE. Clinical Neu-roradiology. 2017;28(3):327-338.

https://doi.org/10.1007/s00062-017-0566-z

24.   Jadhav A, Aghaebrahim A, Horev A et al. Stent Retriever-Mediated Manual Aspiration Thrombectomy for Acute Ischemic Stroke. Interventional Neurology. 2016;6(1-2):16-24.

https://doi.org/10.1159/000449321

25.   Patent RUS №2670193/ 18.10.18. Byul. №29. Logvinenko RL, Arablinskiy AV, Domashenko MA et al. The method of endovascular combined thrombectomy from cerebral arteries. [In Russ.] Available at (23.09.2019):

http://www1.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&rn=1407&DocNum-ber=2670193&TypeFile=html

26.   Hwang Y, Kang D, Kim Y, Kim Y, Park S, Suh C. Outcome of forced-suction thrombectomy in acute intracranial internal carotid occlusion. J Neurointervent Surg. 2012;5(suppl 1):i81-i84.

https://doi.org/10.1136/neurintsurg-2012-010277

27.   Turk A, Spiotta A, Frei D, Mocco J, Baxter B, Siddiqui A et al. O-002 Initial Clinical Experience with the ADAPT technique: A Direct Aspiration first Pass Technique for Stroke Thrombectomy. J Neurointervent Surg. 2013;5(Suppl 2):A1.2-A1.

https://doi.org/10.1136/neurintsurg-2013-010870.2

28.   Volodukhin M.U. Roentengen-endovascular method of cerebral flow restoration in acute tandem occlusion of the internal carotid artery with embolism development in middle cerebral artery. Kazan medical journal. 2016;97(3): 457-460 [In Russ].

https://doi.org/10.17750/KMJ2016-457

29.   Geroulakos G, Ramaswami G, Nicolaides A et al. Characterization of symptomatic and asymptomatic carotid plaques using high-resolution real-time ultrasonography. British Journal of Surgery. 1993;80(10): 1274-1277.

https://doi.org/10.1002/bjs.1800801016

30.   Adams H, Bendixen B, Kappelle L et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35-41.

https://doi.org/10.1161/01.str.24.1.35

31.   Logvinenko RL, Kokov LS, Shabunin AV, Arablinskiy AlV, Tsurkan VA. Analysis of a modified method for combined removal of throbus from blood vessels of the brain in the treatment of acute ischemic stroke. REJR. 2020; 10 (1):159-177 [In Russ].

https://doi.org/10.21569/2222-7415-2020-10-1-159-177

32.   Chen C, Parsons M, Levi C, Spratt N, Miteff F, Lin L et al. Exploring the relationship between ischemic core volume and clinical outcomes after thrombectomy or thrombolysis. Neurology. 2019;93(3):e283-e292.

https://doi.org/10.1212/WNL.0000000000007768

33.   Southerland A, Johnston K. Considering hyperglycemia and thrombolysis in the Stroke Hyperglycemia Insulin Network Effort (SHINE) trial. Annals of the New York Academy of Sciences. 2012;1268(1):72-78.

https://doi.org/10.1111/j.1749-6632.2012.06731.x

34.   Lansberg M, Thijs V, Bammer R, Kemp S, Wijman C, Marks M et al. Risk Factors of Symptomatic Intracerebral Hemorrhage After tPA Therapy for Acute Stroke. Stroke. 2007;38(8):2275-2278.

https://doi.org/10.1161/STROKEAHA.106.480475

 

Abstract:

Background and aim: in Russian Federation, more than 10 million people suffer from peripheral artery disease (PAD), and from chronic limb-threatening ischemia (CLTI) as one of it’s complications. According to Russian guidelines on treatment of patients with CLTI, the initial diagnosis should include measurement of ankle-brachial and finger-brachial indices (ABI, ТВ I), as well as ultrasound duplex scanning (USDS) - however, the sensitivity and diagnostic accuracy of these methods are often insufficient. In this review, we have summarized the entire range of modern instrumental methods for early and effective diagnosis of critical lower limb-threatening ischemia and for the evaluation of limb perfusion.

Materials and methods: 31 sources of domestic and foreign literature published in last 5 years on the issue of modern possibilities for early precision diagnosis of critical limb-threatening ischemia were examined.

Results and conclusions: AHA Experts recommend some experimental technologies for evaluating lower limb perfusion, including angiography with indigocarmine, perfusion computed tomography (CT perfusion), magnetic resonance imaging (MRI), contrast echography, and hyperspectral imaging. Among other things, implantable bio-sensors can be identified: for example, oxygen-platform LuMee, which works in real time and provides continuous monitoring of oxygen levels in tissues. New technologies allow us to improve the accuracy of diagnosis and quality of treatment of patients with CLTI. It is worth considering switching from traditional methods to more modern ones, which can significantly reduce the frequency of amputations and the risk of disability and improve the quality of life of our patients.

 

References

1.     Lobachev АА. Comparative evaluation and long-term results of various methods of surgical revascularization of shin arteries in patients with obliterating atherosclerosis of lower limb arteries. Diss.kand.med.nauk - M., 2019; 110 [In Russ].

2.     Aboyans V, Ricco JB, Bartelink MEL et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). ESC Guidelines. 2017; 39:763-821.

3.     Misra S, Shishehbor MH, Takahashi EA et al. Perfusion Assessment in Critical Limb Ischemia: Principles for Understanding and the Development of Evidence and Evaluation of Devices: A Scientific Statement From the American Heart Association published. Circulation. 2019; 140: 657-672.

4.     «National guidelines for the management of patients with diseases of lower limb arteries»- M.: 2013 [In Russ].

http://www.angiolsurgery.org/recommendations/2013/recommendations_LLA.pdf

5.     Zyyatdinov KSH, Sharafeev AZ, Cibul'kin NA et al. Diagnostics and treatment of clinical manifestations of atherosclerosis. Monografiya. Kazan': Medicina. 2014; 197 [In Russ].

6.     Aboyans V, Criqui MH, Abraham P et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012; 126 (24): 2890-909.

7.     Maksimov AV, Gajsina EA, Plotnikov MV. Vascular and endovascular surgery in figures and diagrams. Uchebnoe posobie. 2018; 152 [In Russ].

8.     Cornell M, Gabriel PO. Non-invasive imaging techniques in lower extremity artery disease. E-Journal of Cardiology Practice. 2018; 16(5) - 21 Mar 2018.

9.     Gerhard-Herman MD, Gornik HL, Barrett C et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary. Circulation. 2017; 135 (12):e686-e725.

10.   Schiro GR, Sessa S, Piccioli A, Maccauro G. Primary amputation vs limb salvage in mangled extremity: a systematic review of the current scoring system. BMC Musculoskeletal Disorders. 2015; 16: 372.

11.   Terskov DV, SHnajder NA. Transcutaneous oximetry as a technique for identifying of threatening critical ischemia in patients with diabetic foot syndrome and occlusive lesions of arteries of lower limbs. Vestnik Klinicheskojbol'nicy №51. 2010; 3(8): 56-61 [In Russ].

12.   Rother U, Lang W. Noninvasive measurements of tissue perfusion in critical limb ischemia. Gefasschirurgie. 2018; 23(Suppl 1): 8-12.

13.   Mahe G, Liedl DA, McCarter C et al. Digital obstructive arterial disease can be detected by laser Doppler measurements with high sensitivity and specificity. Journal of vascular surgery. 2014 Apr;59(4): 1051-1057.e1.

14.   Gurmikova NL. Optimization of methods for diagnosing peripheral arterial diseases in patients with diabetes mellitus. Dissertaciya. 2014; 143-146 [In Russ].

15.   Sitdikova DI. Perioperative control of the efficiency of reconstructive operations in patients with critical lower limb ischemia. Angiologiya i sosudistaya hirurgiya. 2016; 22(2); 320-321 [In Russ].

16.   Lopez D, Pollak AW, Meyer CH et al. Arterial spin labeling perfusion cardiovascular magnetic resonance of the calf in peripheral arterial disease: cuff occlusion hyperemia vs exercise. J Cardiovasc Magn. Reson. 2015; 17(1): 23.

17.   Kikuchi S, Miyake K, Tada Y et al. Laser speckle flowgraphy can also be used to show dynamic changes in the blood flow of the skin of the foot after surgical revascularization. Vascular. 2019; 27(3) 242-251.

18.   Krupatkin Al, Sidorova W. Laser Doppler flowmetry of blood microcirculation. Monografiya. 2005; 119-122 [In Russ].

19.   Aleksandrov DA, Timoshina PA, Tuchin W et al. Dynamics of indicators of laser speckle-visualization of blood flow and morphological changes in tissues with complete temporary local ischemia of the pancreas. Saratovskij nauchno-medicinskij zhurnal. 2014; 10 (4): 596-600 [In Russ].

20.   Jennifer Garcia. Laser Associated Sciences Receives 510(k) FDA Clearance for FlowMet-R. 2019.

http://innovation.uci.edu/2019/04/laser-associated-sciences-receives-510k-fda-clearance-for-flowmet-r/

21.   Met R, Bipat S, Legemate DA et al. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA. 2009; 301 (4):415-24.

22.   Jens S, Koelemay MJ, Reekers JA, Bipat S. Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischemia and intermittent claudication: systematic review and meta-analysis. Eur Radiol. 2013; 23(11):3104-14.

23.   Jens S, Marquering HA, Koelemay MJ, Reekers JA. Perfusion angiography of the foot in patients with critical limb ischemia: description of the technique. Cardiovasc Intervent Radiol. 2015; 38:201-205.

24.   Marco Manzi, Jos C. van den Berg. 2D Perfusion Angiography: A Useful Tool for CLI Treatment. Endovascular. 2015; 76-79.

25.   Pollak AW, Meyer CH, Epstein FH et al. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers. JACC Cardiovasc Imaging. 2012 Dec; 5(12): 1224-30.

26.   Aschwanden M, Partovi S, Jacobi В et al. Assessing the end-organ in peripheral arterial occlusive disease-from contrast-enhanced ultrasound to blood-oxygen-level-dependent MR imaging. Cardiovascular Diagnosis and Therapy. 2014; 4(2), 165-172.

27.   Muller MD, Luck JC, Gao Z et al. Muscle oxygenation during dynamic plantar flexion exercise: combining BOLD MRI with traditional physiological measurements. 2016; 4 (20): e13004.

28.   Maslennikova NS. Possibilities of the method of magnetic resonance imaging in assessing the effectiveness of conservative therapy for chronic ischemia of lower limbs. Dissertaciya. 2017; 94-96 [In Russ].

29.   Higashimori A, Takahara M, Utsunomiya M. Utility of indigo carmine angiography in patients with critical limb ischemia: Prospective multi-center intervention study (DIESEL-study). Catheter Cardiovasc Interv. 2019 Jan 1;93(1):108-112.

30.   Brodmann M. Assessing the clinical utility of real­time tissue oxygen monitoring for endovascular revascularization procedures. Presentation on LINK-2020.

31.   ESC I ESVS Recommendations for the diagnosis and treatment of peripheral arterial disease 2017. Rossijskij kardiologicheskij zhurnal 2018; 23 (8), 218-221 [In Russ].

 

Abstract

The phenomenon of unrecovered coronary blood flow, or the «no-reflow» phenomenon, is the most formidable and insufficiently studied example of clinical failures after percutaneous coronary intervention (PCI) and is manifested as the absence of filling of distal coronary arteries. As a result, endovascular treatment may be completely unsuccessful or may be complicated by delayed recovery, the development of systolic dysfunction, the formation of heart aneurysm and other serious problems. Many experimental and clinical studies have been devoted to «no-reflow», but the evidence for this or that way of influencing the appearance of this phenomenon is very ambiguous. This article presents modern aspects related to risk factors, pathophysiology and methods for diagnosing this complication, as well as an analysis of methods for the prevention and correction of the developed «no-reflow» phenomenon.

 

References

1.     Alekyan B.G. Endovascular diagnosis and treatment of heart and vascular diseases in the Russian Federation - 2017. Endovaskulyarnaya hirurgiya. 2018. T.5, №2. S.93- 240 [In Russ]. 

2.     Van de Werf F. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST- Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Van de Werf F., [et al.] Eur Heart J. 2008. Vol. 29, P. 2909-2945.

3.     Bazanov I.S. Endovascular interventions on venous bypass (literature review). Vestnik RUDN. Seriya: Medicina. 2017. T.21, №2. S.171-183. [In Russ].

4.     Interventional Cardiology. Coronary angiography and stenting: a guideline. M.: GEOTAR-Media, 2010. S.410. [In Russ].

5.     Kaul, S. The «no reflow» phenomenon following acute myocardial infarction: Mechanisms and treatment options. Kaul, S. Journal of Cardiology. 2014. Vol. 64, No.2, P. 77-85.

6.     Kloner R.A. The «no-reflow» phenomenon after temporary coronary occlusion in the dog. Kloner R.A., Ganote C.E., Jennings R.B. J Clin Invest. 1974, Vol. 54, P. 14961508. 

7.     Czarnowska E. Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat heart. Involvement of oxygen free radicals. Czarnowska E, Karwatowska-Prokopczuk E. Basic Res Cardiol. - 1995, Vol. 90, No. 5, P. 3573-64

8.     Kloner R.A. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Kloner R.A., Rude R.E., Carlson N., [et al.] Circulation. 1980, Vol. 62, P. 945-952.

9.     Kleinbongard P. Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Kleinbongard P., Bose D., Baars T., [et al.] Circ Res. 2011, Vol. 108, P 344352

10.   Galagudza M.M., Sonin D.L., Pochkaeva E.I. Postischemic non-restoration of blood flow: mechanisms and therapeutic targets. Regionarnoe krovoobrashchenie i mikrocirkulyaciya. 2018. T. 17, №1. S.5-12. [In Russ].

11.   Higginson L.A. Determinants of myocardial hemorrhage after coronary reperfusion in the anesthetized dog. Higginson L.A., White F., Heggtveit H.A., Sanders T.M., Bloor C.M., Covell J.W. Circulation. 1982, Vol.65, P 62-69. 

12.   Kaul S. Microvasculature in acute myocardial ischemia: part II: evolving concepts in pathophysiology, diagnosis, and treatment. Kaul S., Ito H. Circulation. 2004, Vol. 109, P 310-315.

13.   Theilmeier G. Hypercholesterolemia in minipigs impairs left ventricular response to stress: association with decreased coronary flow reserve and reduced capillary density. Theilmeier G., VerhammeP, DymarkowskiM., [et al.] Circulation. — 2002; Vol. 106, P 1140-1146.

14.   Dogan N.B. Simple clinical risk score for no-reflow prediction in patients undergoing primary percutaneous coronary intervention with acute STEMI. Dogan N.B., Ozpelit E., Akdeniz S., Bilgin M., Baris N. Pak J Med Sci. - 2015, Vol. 31, No. 3. P 576-581.

15.   Plechev V.V., Risberg R.YU., Buzaev I.V. [et al.] Predictors of the development of intraoperative and early complications with planned stenting of coronary arteries. Permskij medicinskij zhurnal. 2017. T.34, №5. S.5-12. [In Russ].

16.   Kundin V.YU. Quantification of viable myocardium by radionuclide method. Serdechnaya nedostatochnost’. - 2010. №1. S.20-25. [In Russ].

17.   Strauss H.W. Procedure guideline for myocardial perfusion imaging 3.3. Strauss H. W., Miller, D. D., Wittry M.D., [et al.]. Journal of Nuclear Medicine Technology. 2008, Vol. 36, No. 3, P 155-161.

18.   Lockie T. Use of cardiovascular magnetic resonance imaging in acute coronary syndromes. Lockie T., Nagel E., Redwood S., Plein S. Circulation. 2009, Vol. 119, P 1671-1681

19.   Hayat S.A. Myocardial contrast echocardiography in ST elevation myocardial infarction: ready for prime time? Hayat S.A., Senior R. Eur Heart J. 2008, Vol. 29, P 299214. 

20.   Granfeldt A. Protective ischemia in patients: preconditioning and postconditioning. Granfeldt A., Lefer D.J., Vinten-Johansen J. Cardiovasc. Res. 2009, Vol. 83, No. 2, P. 234-246.

21.   M. R. Schmidt. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic preconditioning. M. R. Schmidt [et al.] Am. J. Physiol. Heart Circ. Physiol. 2007, Vol. 292, No. 4, P 1883-1890.

22.   Heusch G. Remote ischemic conditioning. Heusch G., Botker H.E., Przyklenk K., [et al.] J Am Coll Cardiol. 2015, Vol. 65, P 177-195.

23.   Vinten-Johansen J. Perconditioning and postconditioning: current knowledge, knowledge gaps, barriers to adoption, and future directions. Vinten-Johansen J., Shi W. J. Cardiovasc. Pharmacol. Ther. 2011, Vol. 16, No. 34, P 260-266.

24.   Mojbenko A. A., Dosenko V.E., Parhomenko. A.N Endogenous mechanisms of cardioprotection as a basis for pathogenetic therapy of heart diseases. Kiev, Naukova dumka, 2008. C. 520. [In Russ]. 

25.   Lishmanov YU.B., Maslov L.N. Ischemic postconditioning of the heart. Receptor mechanisms and clinical applications. Kardiologiya. 2010. №6. S.68-74.

26.   Zhao Z.Q. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Zhao Z.Q., Corvera J.S., HalkosM.E. , [et al.] Am. J. Physiol. Heart Circ. Physiol. 2003, Vol. 285, No. 2, P 579-588.

27.   Jivraj N. Ischaemic postconditioning: cardiac protection after the event. Jivraj N., Liew F, Marber M. Anaesthesia. 2015, Vol. 70, P 598-612.

28.   Limalanathan S. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. Limalanathan S., Andersen G.lll., Klaw N.E., Abdelnoor M., Hoffmann P, Eritsland J. J. Am. Heart Assoc. 2014, Vol. 3, No. 2, e000679.

29.   Cung T.T. Cyclosporine before PCI in patients with acute myocardial infarction. Cung T.T., Morel O., Cayla G., Rioufol G., Garcia-Dorado D., Angoulvant D., [et al.] New Engl. J. Med.-2015, Vol. 373, P 1021-1031.

30.   Tissier R. The small chill: Mild hypothermia for car- dioprotection? Tissier R., Chenoune M., Ghaleh B., Cohen M.V., Downey J.M., Berdeaux A. Cardiovasc Res. 2010, Vol. 88, P 406-414.

31.   O'Neill W. COOL-MI: Cooling as an Adjunctive Therapy to Percutaneous Intervention in Patients with Acute Myocardial Infarction. O'Neill W. Paper presented at: 15th Annual Transcatheter Cardiovascular Therapeutics Washington DC 2003.

32.   Erlinge D. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction (The CHILL-MI trial). Erlinge D., Gutberg M., LangI., [et al.] J Am Coll Cardiol. 2014, Vol. 63, No. 18, P. 1857-1865

33.   Marzilli M. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Marzilli M., Orsini E., Marraccini P., [et al.] Circulation. - 2000, Vol. 101, P. 2154-2159.

34.   Liu G.S. Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Liu G.S., Richards S.C., Olsson R.A., Mullane K., Walsh R.S., Downey J.M. Cardiovasc Res. 1994, Vol. 28, P. 1057-1061.

35.   Liu G.S. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Liu G.S., Thornton J., Van Winkle D.M., Stanley A.W., Olsson R.A., Downey J.M. Circulation. 1991, Vol. 84, P. 350-356.

36.   Niu X. Effect of intracoronary agents on the noreflow phenomenon during primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction: a network meta-analysis. Niu X., Zhang J., Bai M., Peng Y, Sun S., Zhang Z. BMC Cardiovascular Disorders. 2018, Vol.18, P. 3.

37.   Pan W. Intracoronary nitroprusside in the prevention of the no-reflow phenomenon in acute myocardial infarction. Pan W., Wang L.F., [et al.] Chin Med J (Engl). 2009, Vol. 122, No. 22, P. 2718-2723

38.   Zhao S. Effect of intracoronary nitroprusside in preventing no reflow phenomenon during primary percutaneous coronary intervention: a meta-analysis. Zhao S., Qi G., Tian W., Chen L., Sun Y J Interv Cardiol. 2014, Vol. 27, No. 4, P. 356-364.

39.   Haeck J.D. Infarct size and left ventricular function in the PRoximal Embolic Protection in Acute myocardial infarction and Resolution of ST-segment Elevation (PREPARE) trial: ancillary cardiovascular magnetic resonance study. Haeck J.D., Kuijt W.J., Koch K.T., et al. Heart. 2010, Vol. 96, P. 190-195.

40.   Haeck J.D. Proximal embolic protection in patients undergoing primary angioplasty for acute myocardial infarction (PREPARE): core lab adjudicated angiographic outcomes of a randomised controlled trial. Haeck J.D., Koch K.T., Gu YL., [et al.] Netherlands Heart Journal. - 2010, Vol. 18, No. 11, P. 531-536.

41.   Gurvitch R. Protection Devices and Thrombectomy for Native Coronary Artery ST Elevation Myocardial Infarction. Gurvitch R., Ajani A., Yan B., [et al.] J. Invasive Cardiol. 2008, Vol. 20, No. 4, P. 190-195.

42.   Stone G. Distal Microcirculatory Protection During Percutaneous Coronary Intervention in Acute ST Segment Elevation Myocardial Infarction. Stone G., Webb J., Cox D., [et al.] J. Am. Heart Assoc. - 2005, Vol. 293, No. 9, P. 10631072.

43.   De Luca G.. Adjunctive manual thrombectomy improves myocardial perfusion and mortality in patients undergoing primary percutaneous coronary intervention for ST elevation myocardial infarction: a metaanalysis of randomized trials. De Luca G., Dudek D., Sardella G., [et al.] Eur. Heart J. - 2008, Vol. 29, P. 3002-3010.

44.   Jolly S.S. Thrombus Aspiration in ST-Segment- Elevation Myocardial Infarction: An Individual Patient MetaAnalysis: Thrombectomy Trialists Collaboration. Jolly S.S., James S., Dhavнk V., [et al.] Circulation. 2017, Vol. 135, P. 143-152.

45.   Ibanez B.. Acute Myocardial Infarction in patients presenting with ST-segment elevation (Management of) ESC Clinical Practice Guidelines 2017. Ibanez B., James S.,    Ag S., [et al.] Eur. Heart J. 2017, P. 1-66

46.   Schroder R. Extent of early ST segment elevation resolution: a simple but strong predictor of outcome in patients with acute myocardial infarction. Schroder R., Dissmann R., Bruggemann T., [et al.] J. Am. Coll. Cardiol. 1994, Vol. 24, P. 384-391.

47.   Taghizadeh B. AngioJet trombectomy and stenting for reperfusion in acute MI complicated with cardiogenic shock. Taghizadeh B., Chiu J.A., Papaleo R., [et al.] Cathet. Cardiovasc.Invervent. - 2002, Vol. 57, P. 79-84. 

Abstract:

Aim: was to analyze long-term resuts of true lumen reconstruction in complicated aortic dissections type В with help of balloon-expandable stents under intravascular ultrasonic (IVUS) guidance as a preoperative evaluation of anatomy and morphology of lesion.

Materials and methods: 47 patients witn type В aortiс dissections underwent endovascular treatment in our departmert n 20 cases - IVUS was used for irtraoperative anatomy and morphology verification. Complications developed n 16 patients, and true lumen was reconstructed by stent-graft implantation (to cover proximal fenestration) followed by balloon-expandable stents implantation at the level of visceral arteries under IVUS control at every stage. 87,5% of patents were man, mean ago 51 8—16,2 years.

Results: Technical success was 100% True lumen total reconstruction was reached in every case under precise IVUS control. Visceral arteries malperfusion was not observed at hospital period or follow-up. З0-day mortality rate was 6,25% (1 case due to aortic rupture in uncovered part of aorta - 7 days after procedure). All 15 discharged patients survived for 1st year. Mean follow-up period is 3,3±1,6 years. One patient died due to aortobronchial fistula, 1 due to repeated stroke and 1 due to cancer. At CT-scan 2 years after implantation (10 cases) fractures of balloon-expandable stents were observed, without аnу influence on intraluminal size or stenotic lesion. True lumen size stayed stable for 1 year.

Conclusion: true lumen reconstruction under IVUS control seems to be feasible and effective in complicated Type B dissections, even with the use of balloon-expandable stents. The usage of additional intraoperative visualization - intraaortic IVUS is the key point in the development of advanced endovascular methods.

 

References

1.      Erbel R., Aboyans V., Boileau C., et al. Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. Eur Heart J. 2014;35:2873-926.

2.      Fattori R., Cao P., De Rango P, et al. Interdisciplinary expert consensus document on management of type B aortic dissection. J Am Coll Cardiol. 2013; 61: 1661-78.

3.      Eggebrecht H., Nienaber C.A., Neuhauser M., et al. Endovascular stent graft placement in aortic dissection: a metaanalysis. Eur Heart J. 2006; 27: 489e98.

4.      Mossop P.J., McLachlan C.S., Amukotuwa S.A., Nixon I.K. Staged endovascular treatment for complicated type B aortic dissection. Nat Clin Pract Cardiovasc Med. 2005;2:316-21.

5.      Canaud L., Faure E.M., Ozdemir B.A., Alric P., Thompson M. (2014) Systematic review of outcomes of combined proximal stent-grafting with distal bare stenting for management of aortic dissection. Ann Cardiothorac Surg. 3: 223-233.

6.      Nienaber C.A., von Kodolitsch Y, Nicolas V., et al. The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med. 1993; 328: 1-9.

7.      Evangelista A., Flachskampf F.A., Erbel R., et al. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur J Echocardiogr. 2010; 11: 645-658.

8.      Fattori R., Caldarera I., Rapezzi C., et al. Primary endoleakage in endovascular treatment of the thoracic aorta: importance of intraoperative transesophageal echocardiography. J Thorac Cardiovasc Surg. 2000; 120: 490-5.

9.      Rocchi G., Lofiego C., Bigini E., et al. Transesophageal echocardiography-guided algorithm for stent-graft implantation in aortic dissection. J Vasc Surg. 2004; 40: 880-5.

10.    Morton J.B., Sanders P., Sparks P.B., et al. Usefulness of phased-array intracardiac echocardiography for the assessment of left atrial mechanical “stunning” in atrial flutter and comparison with multiplane transesophageal echocardiography. Am J Cardiol. 2002; 90: 741-6.

11.    Marrouche N.F., Martin D.O., Wazni O., et al. Phased-array intracardiac echocardiography monitoring during pulmonary vein isolation in patients with atrial fibrillation: impact on outcome and complications. Circ 2003; 107: 2710-6.

12.    Caldararu C., Balanescu S. Modern Use of Echocardiography in Transcatheter Aortic Valve Replacement: an Up-Date. M&dica. 2016; 11(4): 299-307.

13.    Jongbloed MR.M., Schalij M.J., Zeppenfeld K., et al.Clinical applications of intracardiac echocardiography in interventional procedures. Heart. 2005; 91(7): 981-990. doi:10.1136/hrt.2004.050443.

14.    Kang S.J., Ahn J.M., Kim W.J., et al. Intravascular ultrasound assessment of drug-eluting stent coverage of the coronary ostium and effect on outcomes. Am J Cardiol. 2013; 111: 1401-7.

15.    Hitchner E., Zayed M.A., Lee G., et al. Intravascular ultrasound as a clinical adjunct for carotid plaque characterization. J Vasc Surg 2014; 59: 774-80.

16.    Diethrich E.B., Irshad K., Reid D.B. Virtual histology and color intravascular ultrasound in peripheral interventions. Semin Vasc Surg. 2006; 19: 155-62.

17.    Song T.K., Donayre C.E., Kopchok G.E., White R.A. Intravascular ultrasound use in the treatment of thoracoabdominal dissections, aneurysms, and transections. Semin Vasc Surg. 2006; 19: 145 9.

18.    Pearce B.J., Jordan W.D. Jr. Using IVUS during EVAR and TEVAR: Improving patient outcomes. Semin Vasc Surg. 2009; 22: 172 80.

19.    Lee J.T., White R.A. Basics of intravascular ultrasound: An essential tool for the endovascular surgeon. Semin Vasc Surg. 2004; 17: 110 8.

20.    Gol'dina I.M., Trofimova E.Yu., Kokov L.S., Parxomenko M.V., Chernaya N.R., Sokolov V.V., Redkoborody'j A.V., Rubczov N.V. Possibilities of intravascular ultrasound examination using a phased array catheter sensor in the diagnosis and treatment of aortic dissection. Ultrazvukovaya i funktsiomalnaya diagnostika. 2016; 1: 78-89 [In Russ].

21.    Martin Z.L., Mastracci T.M. The evaluation of aortic dissections with intravascular ultrasonography. Vascular Disease Management. 2011; 03(31). Available at: http://www.vasculardiseasemanagement.com/content/ev aluation-aortic-dissections-intravascular-ultrasonography/ (accessed 10 march 2018).

22.    Eggebrecht H., Nienaber C.A., Neuhauser M., et al. Endovascular stent graft placement in aortic dissection: a metaanalysis. Eur Heart J. 2006; 27: 489e98.

23.    Mossop P.J., McLachlan C.S., Amukotuwa S.A., Nixon I.K. Staged endovascular treatment for complicated type B aortic dissection. Nat Clin Pract Cardiovasc Med. 2005; 2: 316e22.

24.    Nienaber C.A., Kische S., Zeller T., et al. Provisional extension to induce complete attachment after stent graft placement in type B aortic dissection: the PETTICOAT concept. J Endovasc Ther. 2006; 13: 738e46.

25.    Lombardi J.V., Cambria R.P, Nienaber C.A., et al. Prospective multicenter clinical trial (STABLE) on the endovascular treatment of complicated type B aortic dissection using a composite device design. J Vasc Surg. 2012; 55: 629e40.

26.    Hoshina K., Kato M., Miyahara T., et al. Retrospective study of intravascular ultrasound use in patients undergoing endovascular aneurysm repair: Its usefulness and a description of the procedure. Eur J Vasc Endovasc Surg. 2010; 40: 559-63.

27.    Guo B-L., Shi Z-Y, Guo D-Q., et al. Effect of Intravascular Ultrasound-assisted Thoracic Endovascular Aortic Repair for «Complicated» Type B Aortic Dissection. Chinese Medical Journal. 2015; 128(17): 2322-2329.

 

Abstract:

The article presents an analysis of the choice of strategy for the treatment of ischemic stroke in the acute period, based on literature review.

Aim: was to develop the concept of effective thromboextraction (TE), based on the evaluation of factors influencing results of reperfusion treatment of ischemic stroke (IS), methods of endovascular restoration of cerebral blood flow

Materials and methods: meta-analysis of 44 sources of domestic and foreign literature is performed. The analysis of factors limiting the effectiveness of various reperfusion approaches and the analysis of modern methods of thrombectomy are performed.

Results: it is established, that SMAT (Solumbra) and PROTECT techniques have an advantage in comparison with aspiration approaches to thrombectomy in reducing the period to full reperfusion; methods with temporary occlusion of the source vessel (BGC) SAVE and PROTECT significantly reduce the risk of stroke spread to new vascular areas of the brain and increase the frequency of successful recanalization.

Conclusion: at present time, the PROTECT is the most effective technique in the frequency of successful recanalization, the degree and speed of achieved reperfusion, as well as in the prevention of distal embolization. Extrapolation of experience and principles from other sections of interventional radiology, development of new methods and strategies of brain reperfusion, depending on the morphology of thromboembolism, its size, localization and extent may contribute to improving results of endovascular treatment of ischemic stroke.

 

References

1.      Newsletter of the WHO №317, 2015 January.

2.      Jansen O., von Kummer R., Forsting M. et al. Thrombolytic therapy in acute occlusion of the intracranial internal carotid artery bifurcation. AJNR Am J Neuroradiol. 1995; Nov-Dec; 16(10): 1977-86.

3.      Furlan A., Higashida R., Wechsler L. et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA. 1999 Dec; 282(21): 2003-11.

4.      Domashenko M.A., Maksimova M.Yu., GafarovaM.E. i dr. Personifikatsiya podkhodov k reperfuzionnoj terapii ishemicheskogo insul'ta [Personification of approaches to reperfusion therapy of ischemic stroke.] Annaly klinicheskojI experimental'noj nevrologii. 2017; 11(1): 7-13.

5.      Domashenko M.A., Panova K.V., Murtazalieva D.M. i dr. Personifikatsiya tromboliticheskoj terapii patsientov s ishemicheskim insulom [Personification of thrombolytic therapy in patients with ischemic stroke.] Medica mente. 2017; 3(1): 45-48.

6.      Emberson J. et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. - 2014; 384(9958): 1929-1935.

7.      Fransen P.S., Berkhemer O.A., Lingsma H.F. et al. Time to Reperfusion and Treatment Effect for Acute Ischemic Stroke: A Randomized Clinical Trial. JAMA Neurol. 2016 Feb; 73(2): 190-196.

8.      Seet R.C., Rabinstein A.A. Symptomatic intracranial hemorrhage following intravenous thrombolysis for acute ischemic stroke: a critical review of case definitions. Cerebrovasc Dis. 2012; 34: 106-114.

9.      Yaghi S., Eisenberger A., Willey J.Z. Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: a review of natural history and treatment. JAMA Neurol. 2014; 71(9): 1181-1185.

10.    Yaghi S., Boehme A.K., Dibu J. et al. Treatment and Outcome of Thrombolysis-Related Hemorrhage: A Multicenter Retrospective Study. JAMA Neurol. 2015; 72(12): 1451-1457.

11.    Hacke W., Kaste M., Bluhmki E. et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008; 359: 1317-1329.

12.    Nikoubashman O., Reich A., Pjontek R. et al. Postinterventional subarachnoid haemorrhage after endovascular stroke treatment with stent retrievers. Neuroradiology. 2014; Dec; 56(12): 1087-1096.

13.    Kornienko V.N., Pronin I.N. Diagnosticheskaya nejroradiologiya. [Diagnostic Neuroradiology]. Moscow. 2006: 1317 [In Russ].

14.    Urbach H. et al. Local intra-arterial thrombolysis in the carotid territory: does recanalization depend on the thromboembolus type? Neuroradiology 2002; 44: 695-699.

15.    Riedel C.H., Zimmermann P., Jensen-Kondering U. et al. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;Jun; 42(6):1775-1777.

16.    Del Zoppo C.J. et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann. Neurol. - 1992, 32: 78-86.

17.    Mori E. et al. Intravenous recombinant tissue plasminogen activator in acute carotid territory stroke. Neurology, 1992; 42: 976-982.

18.    Shamalov N.A. Optimizatsiya reperfusionnoj terapii u patsientov s ishemicheskim insultom. Diss. dokt. med. nauk [Optimization of reperfusion therapy in patients with ischemic stroke. Dr. med. sci. diss.]. Moscow. 2012: 47 [In Russ].

19.    Lansberg M.G. et al. Risk factors of symptomatic intracerebral hemorrhage after tPA therapy for acute stroke. Stroke. - 2007; 38: 2275-2278.

20.    Bracard S., Ducrocq X., Mas J.L., et. al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol. 2016; Oct; 15(11): 1138-1147.

21.    Powers W.J., Rabinstein A.A., Ackerson T. et al. 2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2018 Mar; 49(3): 46 - 99.

22.    Eva A. Mistry, Akshitkumar M. Mistry, Mohammad Obadah Nakawah, Mechanical Thrombectomy Outcomes with and without Intravenous Thrombolysis in Stroke Patients. Stroke. 2017 Sept; 48(9): 2450-2456.

23.    Kaesmacher J., Boeckh-Behrens T., Simon S. et al. Risk of Thrombus Fragmentation during Endovascular Stroke Treatment. AJNR Am J Neuroradiol. 2017 May; 38(5): 991-998.

24.    Nikoubashman O., Reich A., Pjontek R. et al. Postinterventional subarachnoid haemorrhage after endovascular stroke treatment with stent retrievers. Neuroradiology. 2014 Dec; 56(12): 1087-1096.

25.    Kang D.H., Park J. Endovascular Stroke Therapy Focused on Stent Retriever Thrombectomy and Direct Clot Aspiration: Historical Review and Modern Application J Korean Neurosurgical Society 2017 May; 60(3): 335-347.

26.    Kang D.H., Hwang YH., Kim YS. et al. Direct thrombus retrieval using the reperfusion catheter of the penumbra system: forced-suction thrombectomy in acute ischemic stroke. AJNR Am J Neuroradiol. 2011 Feb; 32(2): 283 - 287.

27.    Hwang YH., Kang D.H., Kim YW. et al. Outcome of forced-suction thrombectomy in acute intracranial internal carotid occlusion. J Neurointervent Surg. 2013; 5 (Suppl 1): 81-84.

28.    Turk AS, Spiotta A, Frei D, et al. Initial clinical experience with the ADAPT technique: a direct aspiration first pass technique for stroke thrombectomy. J Neurointervent Surg. 2014 Apr; 6(3): 231-237.

29.    Lee D.H., Sung J.H., Kim S.U. et al. Effective use of balloon guide catheters in reducing incidence of mechanical thrombectomy related distal embolization. Acta Neurochirurgica 2017 Sept; 159(9): 1671-1677.

30.    Kang D.H., Kim YW., Hwang YH. et al. Switching strategy for mechanical thrombectomy of acute large vessel occlusion in the anterior circulation. Stroke. 2013; Dec; 44(12): 3577-3579.

31.    Deshaies EM. Tri-axial system using the Solitaire-FR and Penumbra Aspiration Microcatheter for acute mechanical thrombectomy. J Clin Neurosci. 2013; 20(9): 1303-1305.

32.    Humphries W., Hoit D., Doss V.T. et al. Distal aspiration with retrievable stent assisted thrombectomy for the treatment of acute ischemic stroke. J Neurointerv Surg. 2015; 7(2): 90-94.

33.    Lee J.S., Hong J.M., Lee S.J. et al. The combined use of mechanical thrombectomy devices is feasible for treating acute carotid terminus occlusion. Acta Neurochir (Wien) 2013; 155(4): 635 - 641.

34.    Jadhav A.P, Aghaebrahim A., Horev A. et. al. Jovina, Stent Retriever-Mediated Manual Aspiration Thrombectomy for Acute Ischemic Stroke. Interv Neurol. 2017 Mar; 6(1-2): 16 - 24.

35.    Maegerlein C., Mцnch S., Boeckh-Behrens T. et al. PROTECT: PRoximal balloon Occlusion TogEther with direCt Thrombus aspiration during stent retriever thrombectomy - evaluation of a double embolic protection approach in endovascular stroke treatment. J Neurointerv Surg. 2017; 0: 1 - 5.

36.    Maus V., Behme D., Kabbasch C. et al. Maximizing First-Pass Complete Reperfusion with SAVE. Clin Neuroradiol. 2017 Feb 13. doi: 10.1007/s00062-017-0566-z.

37.    Wiesmann M., Brockmann M.A., Heringer S. et al. Active push deployment technique improves stent/vesselwall interaction in endovascular treatment of acute stroke with stent retrievers. J Neurointerv Surg. 2017 Mar; 9(3): 253 - 256.

38.    Nikoubashman O., Alt J.P, Nikoubashman A. et al. Optimizing endovascular stroke treatment: removing the microcatheter before clot retrieval with stent-retrievers increases aspiration flow. J Neurointerv Surg. 2017 May; 9(5): 459-462.

39.   Volodyukhin M.U., Novozhilova A.A. Sposob vosstanovleniya krovotoka pri sochetannom tromboze vnutrennej sonnoj I srednej mozgovoj arterij [A method for restoring of blood flow in a combined thrombosis of the internal carotid and middle cerebral artery]. Patent RF №2629046, 2016.

40.    Volodyukhin M.U. Rentgenendovaskulyarnyj metod vosstanovleniya cerebral'nogo krovotoka pri ostroy tandemnoj okklyuzii vnutrennej sonnoj arterii s razvitiem embolii v srednyuyu mozgovuyu arteriyu. [Endovascular method of cerebral blood flow restoration in acute tandem occlusion of the internal carotid artery with embolism development in the middle cerebral artery.] Kazanskij meditsinskijzhurnal. 2016; 97(3): 457-460.

41.    Noser EA, Shaltoni HM, Hall CE, et al. Aggressive mechanical clot disruption: a safe adjunct to thrombolytic therapy in acute stroke? Stroke 2005; 36: 292-296.

42.    Nakano S., Iseda T., Yoneyama T. et al. Direct percutaneous transluminal angioplasty for acute middle cerebral artery trunk occlusion: an alternative option to intra-arterial thrombolysis. Stroke 2002; 33: 2872-2876.

43.    Qureshi AI, Siddiqui AM, Suri MF. et al. Aggressive mechanical clot disruption and low-dose intra-arterial third-generation thrombolytic agent for ischemic stroke: a prospective study. Neurosurgery 2002; 51: 1319-1329.

44.    von Gadow N., Nikoubashman O., Freiherr J. et al. Endovascular stroke treatment now and then-procedural and clinical effectiveness and safety of different mechanical thrombectomy techniques over time. Quant Imaging Med Surg. 2017 Feb; 7(1): 1-7.

 

Abstract:

Aim: was to identify features of disorders of brain perfusion and diffusion in venous stroke anc arterial stroke by CT and MRI.

Material and methods: in groups with acute venous stroke due dural sinustrombosis without primary hemorrhage (n=39) and atherothrombotic stroke (n=33) were performed perfusion CT (with relative MTT, CBV CBF) and MRI (with relative DWI and ADC), besides routine CT and CTA.

Results: rMTT in central areas were not different, but in venous stroke perifocal zone rMTT=1.27±0.2 vs. 1.68±0.6 in arterial stroke (p=0.00001); rCBF=0.76±0.5 vs. 0.36±0.2 focal and 1.28±0.25 vs. 0.69±0.26 perifocal (p=0.00001); rCBV=0.89±0.4 vs. 0.55±0.25 focal (p=0.0000001) and perifocal 1.28±0.25 vs. 1.07±0.42 (p=0,0006); rDWI = 1.69±0.34 vs. 2.11±0.47 focal (p=0.0001) and rDWI=1.1±0.4 vs. 2.14±0.32 perifocal (p=0.0039); rADC in central zone of venous lesions average 1.26±0.99 vs. 0.63±0.25 arterial stroke (p=0.0018); perifocal no different. A high correlation (r=0.95) was found when comparing the area affected (cm2) on CBV and DWI maps.

Conclusion: MR or CT perfusion and MR diffusion imaging in acute stroke make it possible to distinguish between primary arterial ischemic brain damage from congestive plethora due venous stroke. Perfusion-diffusion mismatch venous stroke has a different origin than in arterial stroke. If infarction is not formed benign hyperemia (not oligemia) - early vasogenic edema identified like basis of venous stroke. Venous ischemia is secondary and is associated with an externally constriction of microcirculation.

 

References

1.      Palena L.M., F.Toni, V.Piscitelli et al. CT Diagnosis of Cerebral Venous Thrombosis: Importance of the First Examination for Fast Treatment. The Neuroradiology J. 2009;22 :137-49.

2.      Hacke W., Hennerici M.G., Gelmers H.J., Kramer G. Cerebral ischemia. Springer Verlag BerlinHeidelberg. 1991; 238.

3.      Tarulli A. Neurology. A Clinician’s Approach. CambridgeUniversity Press. 2010; 240.

4.      Saposnik G., Barinagarrementeria F., Brown R.D. et al. Diagnosis and management of cerebral venous thrombosis: A statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011; 42: 1158-92.

5.      Kawaguchi T., Kawano T., Kaneko Y et al. Classification of venous ischemia with MRI. J. Clin. Neurosci. 2001; 8(Suppl. 1): 82-88.

6.      Nentwich L.M., Veloz W. Neuroimaging in acute stroke. Emerg Med Clin North Am. 2012; 30: 659-80.

7.      Luby M., Ku K.D., Latour L. Et al. Visual perfusion-diffusion mismatch is equivalent to quantitative mismatch. Stroke. 2011;42:1010-14.

8.      Semenov S.E., Kovalenko A.V., Khromov A.A. et al. Kriterii diagnostiki negemorragicheskogo venoznogo insul'ta metodami rentgenovskoj mul'tispiral'noj komp'yuternoj (MSKT) i magnitno-rezonansnoj tomografii (MRT). [Non-haemorrhagic venous stroke diagnosis criteria by multisliced computed tomography (MSCT) and magnetic resonsnce imaging (MRI).] Complex Issues of Cardiovascular Diseases. 2012;1:43-53 [In Russ.].

9.      Portnov YU.M., Semenov S.E., Kokov A.N. Perfuzionnaya komp'yuternaya tomografiya v ocenke sostoyaniya cerebral'noj gemodinamiki u pacientov s ishemicheskoj bolezn'yu serdca, perenesshih koronarnoe shuntirovanie v usloviyah iskusstvennogo krovoobrashcheniya. [Perfuison CT in assessment of cerebral hemodynamics in coronary artery disease patients undergoing on-pump CABG.] Sibirskii meditsinskii zhurnal. 2016;31(2):34-37 [In Russ.]

10.    Shatohina M.G. Magnitno-rezonansnaya i komp'yuternaya tomografiya v diagnostike negemorragicheskogo insul'ta, vyzvannogo cerebral'nym venoznym trombozom. [MRI and CT in diagnosis of non-hemorrhagic stroke, caused by venous thrombosis]Diss. kand. med. nauk. Tomsk. 2012; 193 [In Russ].

11.    Koenig M., Kraus M., Theek C. et al. Quantitative assessment of ischemic brain by means of perfusion related parameters derived from perfusion CT. Stroke. 2001; 322: 431-7.

12.    Nguyen T.B., Lum C., Eastwood J.D. et al. Hyperperfusion on perfusion computed tomography following revascularization for acute stroke. Acta Radiol. 2005; 46(6):610-15. doi: 10.1080/02841850510021607.

13.    Semenov S., MoldavskayaI., Shatokhina M. et al. How to distinguish between venous and arterial strokes and why? The Neuroradiology J. 2011; 24: 289-99.

14.    Oray D., Limon O., Ertan C. et al. Inter-observer agreement on diffusion-weighted magnetic resonance imaging interpretation for diagnosis of acute ischemic stroke among emergency physicians. Turk J Emerg Med. 2015; 15(2): 64-68. doi: 10.5505/1304.7361.2015.32659.

15.    Semenov S.E., Moldavskaya I.V., Semenov A.S., Barbarash L.S. Kriterii MR- i KT-differencial'noj diagnostiki venoznogo I arterial'nogo insul'ta. [The MR- and CT-Differential Diagnostic Criteria of Venous and Arterial Insult.] Meditsinskaya vizualizatsiya. 2010; 6: 41-9 [In Russ.].

16.    Mullins M.E., Grant P.E., Wang B. et al. Parenchymal abnormalities associated with cerebral venous sinus thrombosis: assessment with diffusion-weighted MR imaging. Am J Neuroradiol. 2004; 25: 1666-75.

17.    Semenov S.E., Moldavskaya I.V., Kovalenko A.V. et al. Ocenka rutinnyh topomorfometricheskih kriteriev mul'tispiral'noj komp'yuternoj tomografii i magnitno-rezoansnoj tomografii v diagnostike negemorragicheskogo insul'ta, vyzvannogo cerebral'nym venoznym trombozom. [Evaluation of routine topomorphometric criteria of multispiral computed tomography and magnetic resonance imaging in the diagnosis of non-hemorrhagic stroke, caused by cerebral venous thrombosis.] Clinical Physiology of Circulation. 2013; 3: 37-45 [In Russ.].

18.    Leach J.L., Fortuna R.B., Jones B.V., Gaskill-Shipley M.F. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006; 26(suppl 1): 19-41.

19.    Bousser M.G., Ferro J.M. Cerebral venous thrombosis: an update. Lancet Neurol. 2007; 6: 162-70.

20.    Semenov S., Portnov Yu., Semenov A. et al. Neuroimaging patterns of cerebral hyperperfusion. IOP Conf. Series: Journal of Physics: Conf. Series. 2017; 886: 012014 doi :10.1088/1742-6596/886/1/012014

21.    Gonzalez R.G., Hirsch J.A., Koroshetz W.J. et al. Acute Ischemic Stroke Imaging and Intervention. Springer. Verlag. Berlin. Heidelberg. 2006; 268.

22.    Semenov S.E., Moldavskaya I.V., Shatokhina M. G. et al. CT and MRI patterns of focal hyperemia in venous insult. Neuroradiology. 2012; 54 (Suppl. 1): 176.

23.    Powers W.J., Derdeyn C.P, Biller J. et al. 2015 American heart association/American stroke association focused update of the 2013. Guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment. A guideline for healthcare professionals from the American heart association/American stroke association. Stroke. 2015; 46: 3024-39. DOI: 10.1161/STR.0000000000000074.

24.    Luchevaya diagnostika i terapiya zabolevanij golovy i shei: nacional'noe rukovodstvo [Radiation diagnostics and therapy of head and neck diseases: the national leadership ] / gl. red. toma T. N. Trofimova. M.: GEOTAR-Media, 2013; 888 s. (Seriya «Nacional'nye rukovodstva po luchevoj diagnostike i terapii» / gl. red. serii S.K. Ternovoj) [In Russ].

25.    Bogdanov EH.I., Hasanov I.A. Differencial'naya diagnostika infarktov v bassejne zadnih mozgovyh arterij i sindroma zadnej obratimoj lejkoehncefalopatii. [Differential diagnosis of infarctions in the basin of the posterior cerebral arteries and the syndrome of posterior reversible leukoencephalopathy] Mat. Rossijsk. nauchn.-prakt. konf. «Narusheniya mozgovogo krovoobrashcheniya: diagnostika, profilaktika, lechenie». Irkutsk. 2011; 54-5 [In Russ.].

 

Abstract:

Immediate and long-term results of pharmacologically "facilitated" percutaneous coronary inter-ventions (PCI) evaluated in 172 patients with myocardial infarction (MI). Pharmacological reperfusion tried prior to PCA with thrombolytic therapy (TLT, streptokinase or tenecteplase) in 81% of patients, and combination TLT + glycoprotein IIb/IIIa inhibitors (abciximab) in 19%. Average symptom onset to reperfusion time was 197±103 min.

Immediately after PCI 88% patients in both groups presented TIMI - 3 flow (р<0.01 to the initial). Repeated PCI during the hospital stay performed in 4 patients (3 in TLT group, 1 in TLT + abciximab group) with recurrent ischemia or subacute vessel occlusion as a cause of intervention. CABG needed in 2 cases. In-hospital survival rate after 'facilitated' PCI was 98,6 - 100%. 6 months clinical follow-up done in 67% of survivors, 16% of them required admission to hospital (recurrent angina due to restenosis), in 9% patients repeated PCI was performed, 6% underwent coronary bypass grafting. All the repeated procedures were success. Overall 6 months mortality was 5%. This prospective study has shown both immediate and long-term safety and efficiency of "facilitated" coronary interventions in patients with myocardial infarction.

 

Reference 

 

1.     Lincoff A.M., Topol E.J. Illusion of reperfusion: does anyone achieve optimal reperfusion during acute myocardial infarction? Circulation. 1993; 87: 1792-1805.

 

 

2.     FibrinolyticTherapy Trialist's (FTT) Collaborative Group. Indication for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomized trials of more than 1,000 patients. Lancet. 1994; 343: 311-322.

 

 

3.     Gibbons R.J., Holmes D.R., Reeder G.S. et al. Immediate angioplasty compared with the administration of a thrombolytic agent followed by conservative treatment for myocardial infarction. N. Engl.J. Med. 1993; 328: 685-691.

 

 

4.     Grines C.L., Browne K.F., Marco J. et al. For the Primary Angioplasty in Myocardial Infarction Study Group. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial Infarction. N. Engl. J. Med. 1993; 328: 673-679.

 

 

5.     Simoons M.L., Serruys P.W., van den Brand M. et al. Early thrombolysis in acute myocardial infarction: limitation of infarct size and improved survival. J. Am. Coll. Cardiol. 1986; 7: 717-728.

 

 

6.     The GUSTO IIb Angioplasty Substudy Investigators. A clinical trial comparing primary coronary angioplasty with tissue plasminogen activator for acute myocardial infarction. N. Engl.J. Med. 1997; 336: 1621-1628.

 

 

7.     GUSTO Angiographic Investigators.The comparative effects of tissue plasminogen activator, streptokinase, or both on coronary artery patency, ventricular function, and survival after myocardial infarction. N. Engl. J.Med. 1993; 329: 1615-1622.

 

 

8.     Vermeer F., Oude Ophuis A.J.M. et al. Prospective randomised comparison between thrombolysis, rescue PTCA, and primary PTCA in patients with extensive myocardial infarction admitted to a hospital without PTCA facilities: a safety and feasibility study. Heart. 1999; 82: 426-431.

 

 

9.     CORAMI Study Group. Outcome of attempted rescue coronary angioplasty after failed thrombolysis for acute myocardial infarction. Am. J. Cardiol. 1994; 74: 172-174.

 

 

10.   Ellis S.G., Da Silva R.E., Heyndrickx G. et al. Randomized comparison of rescue angioplasty with conservative management of patients with early failure of thrombolysis for acute anterior myocardial infarction. Circulation. 1994; 90: 2280-2284.

 

 

11.   Ross A.M., Lundergan C.F., Rohrbeck S.C. et al. Rescue angioplasty after failed thrombolysis: technical and clinical outcomes in a large thrombolysis trial. J. Am. Coll. Cardiol. 1998; 31: 1511-1517.

 

 

12.   Ellis S.G., Da Silva E.R., Spaulding C.M. et al. Review of immediate angioplasty after fibrinolytic therapy for acute myocardial infarction: insights from the RESCUE I, RESCUE II, and other contemporary clinical experiences. Am. Heart. J. 2000; 139: 1046-1053.

 

 

13.   Lefkovits J., Ivanhoe R.J., Califf R.M. et al. Effects of platelet glycoprotein IIb/IIIa receptor blockade by a chimeric monoclonal antibody (abciximab) on acute and six-month outcomes after percutaneous transluminal coronary angioplasty for acute myocardial in farction. Am.J. Cardiol. 1996; 77: 1045-1051.

 

 

14.   Neumann F.J., Blasini R., Schmitt C. et al. Effect of glycoprotein I Ib/II Ia receptor blockade on recovery of coronary flow and left ventricular function after the placement of coronary-artery stents in acute myocardial infarction. Circulation. 1998; 98: 2695-2701.

 

 

15.   Antoniucci D., Santoro G.M., Bolognese L. et al. A clinical trial comparing primary stenting of the infarct-related artery with optimal primary angioplasty for acute myocardial infarction: Results from the Florence Randomized Elective Stenting in Acute Coronary Occlusions (FRESCO) trial.J. Am. Coll. Cardiol. 1998; 31: 1234-1239.

 

 

16.   Antoniucci D., Valenti R., Santoro G.M. et al. Primary coronary infarct artery stenting in acute myocardial in farction. Am.J. Cardiol. 1999; 84: 505-510.

 

 

17.   Pershukov I., Batyraliev T., Niyazova-Karben Z. et al. Efficacy and Safety of Direct Stenting in Patients with Acute Myocardial Infarction. Catheter. Cardiovasc. Intervent. 2003; 59: 125-126.

 

 

18.   Rodriguez A., Bernardi V., Fernandez M. et al. In-hospital and late results of coronary stents versus conventional balloon angioplasty in acute myocardial infarction (GRAMI trial). Am.J. Cardiol. 1998; 81:1286-1291.

 

 

19.   Stone G.W., Brodie B.R., Griffin J.J. et al. Clinical and angiographic follow-up after primary stenting in acute myocardial infarction. Тhe Primary Angioplasty in Myocardial Infarction (PAMI) Stent Pilot Trial. Circulation. 1999; 99: 1548-1554.

 

 

20.   Petronio A.S., Musumeci G., Limbruno U. et al. Abciximab Improves 6-Month Clinical Outcome After Rescue Coronary Angioplasty. Am. Heart.J. 2002; 143 (2): 334-341.

 

 

21.   Miller J.M., Smalling R., Ohman M. et al. Effectivennes of early coronay angioplasty and abciximab for failed thrombolysis (reteplase or alteplase) during acute myocardial infarction (results from the GUSTO-III Trial). Am.J. Cardiol. 1999; 84: 779-784.

 

 

22.   Jong P., Lazzam C., Cohen E. et al. Bleeding risks with abciximab post thrombolysis in rescue or urgent angioplasty for acute myocardial infarction [abstract 971]. Circulation. 1999; 100: 188.

 

 

23.   Sundlof D.W., Rerkpattanapitat P., Wongprapanut N. et al. Incidence of bleeding complications associated with abciximab use in conjunction with thrombolytic therapy in patients requiring percutaneous transluminal coronary angioplasty. Am.J. Cardiol. 1999; 83: 1569-1571.

 

 

24.   Neumann F.J., Blasini R., Schmitt С et al. Effect of glycoprotein IIb/IIIa receptor blockade on recovery of coronary flow and left ventricular function after the placement of coronary-artery stents in acute myocardial infarction. Circulation. 1998; 98: 2695-2701.

 

 

25.   Keeley E.C., Boura J.A., Grines C.L. Comparison of primary and facilitated percutaneous coronary interventions for ST-elevation myocardial infarction: quantitative review of randomised trials. Lancet. 2006; 367: 579-588.

 

 

26.   Stone G.W., Gersh B.J. Facilitated angioplasty: paradise lost. Lancet. 2006; 367: 543-546.

 

 

27.   Assessment of the Safety and Efficacy of a New Treatment Strategy with Percutaneous Coronary Intervention (ASSENT-4 PCI) investigators. Primary versus tenecteplase-facilitated percutaneous coronary intervention in patients with ST-segment elevation acutemyocardial infarction (ASSENT-4 PCI): randomized trial. Lancet. 2006; 367: 569-578.

 

           28.   Шпектор А.В., Васильева Е.Ю., Артамонов В.Г. и др. Комбинированная реперфузия у больных острым инфарктом миокарда. Кардиология. 2007; 6: 27-30.

 

 

Abstract:

To show possibilities to diagnose and treat toxic complications of continuous hepatic artery chemoinfusion using percutaneous implanted catheter-port system.

Materials and methods: Between May 2005 and March 2007, 20 patients (pts) underwent percutaneous transfemoral implantation of the catheter-port system for treatment of unresectable colorectal liver metastases. Toxic complications (gastritis, pancreatits or stomach ulcer) occurred in three pts (each in one). Endoscopy (after arterial injection of methylene blue) and scintigraphy (after arterial injection of technetium-99m macroaggregated albumin) showed abnormal liver perfusion. Visceral angiography was performed for verification and embolization of non-targeted vessels. Angiography with embolization of collateral arteries resulted in normalization of liver perfusion and resolution of complications. At present, all pts continue to receive intraarterial chemotherapy. Transcatheter coil embolization of non-targeted arteries is effective for the management of the catheter-port system misperfusion.

 

 

Reference 

 

1.     Таразов П.Г. Артериальная химиоинфузия в лечении нерезектабельных злокачественных опухолей печени (обзор литературы). Вопр. онкол. 2000; 46 (5): 521-528.

2.     Балахнин П.В., Генералов М.И., Полысалов В.Н. и др. Применение чрескожных имплантируемых инфузионных систем для регионарной химиотерапии метастазов колоректального рака. Анн. хир. гепатол. 2006; 11 (2): 41-48.

 

3.     Таразов П.Г. Роль методов интервенционной радиологии в лечении больных с метастазами колоректального рака в печень. Практ. онкол. 2005; 6 (2): 119-126.

 

 

4.     Herrmann К., Waggershauser Т., Heinemann V, Reiser М. Interventional radiological procedures in impaired function of surgically implanted catheter-port systems. Cardiovasc. Intervent. Radiol. 2001; 24: 31-36.

 

 

5.     Venturini M., Angeli E., Salvioni M. et al. Complications after percutaneous transaxillary implantation of a catheter for intraarterial chemotherapy of liver tumors: Clinical relevance and management in 204 patients. Am. J. Roentgenol. 2004; 182: 1417-1426.

 

 

6.     Chuang V, Wallace S., Stroehlein J. et al. Hepatic artery infusion chemotherapy: Gastroduodenal complication. Am.]. Roentgenol. 1981; 137: 347-350.

 

 

7.     Cohen A., Kemeny N., К hne C. et al. Is intra-arterial chemotherapy worthwhile in the treatment of patients with unresectable hepatic colorectal cancer metastases? Eur.J. Cancer. 1996; 32: 2195-2205.

 

 

8.     Doria M., Doria L., Faintuch J., Levin B. Gastric mucosal injury after hepatic arterial infusion chemotherapy with floxuridine: A clinical and pathologic study. Cancer. 1994; 73 (8): 2042-2047.

 

9.     Bledin A., Kantarjian H., Kim E. et al. 99mTc-labeled macroaggregated albumin in intrahepatic arterial chemotherapy. Am.]. Roentgenol. 1982; 139:711-715.

10.   Kaplan W, Ensminger W, Come S. et al. Radionuclide angiography to predict patient response to hepatic artery chemotherapy. Cancer Treat. Rep. 1980; 64: 1217-1222.

11.   Frye J., Venook A., Ostoff J. et al. Hepatic intra-arterial methylene blue injection during endoscopy: A method of detecting gastroduodenal misperfusion in patients re ceiving hepatic intra-arterial chemotherapy via implan ted pump. Gastrointestinal Endoscopy. 1992; 38 (1): 52-54.

 

12.   Tanaka Т., Arai Y, Inaba Y. et al. Radiologic placement of side-hole catheter with tip fixation for hepatic arterial infusion chemotherapy. J. Vase. Interv. Radiol. 2003; 14: 63-68.

 

 

13.   Yamagami Т., Kato Т., Iida S. et al. Value of transcatheter arterial embolization with coils and n-butyl cyanoacrylate for long-term hepatic arterial infusion chemotherapy. Radiology. 2004; 230: 792-802.

 

 

14.   Herrmann K., Waggershauser Т., Sittek H. et al. Liver intraarterial chemotherapy: Use of the femoral artery for percutaneous implantation of catheter-port systems. Radiology. 2000; 215: 294-299.

 

 

 

 

Abstract:

Aim: was to improve results of treatment of patients with myocardial infarction who underwent emergency coronary stenting, by prevention of bleeding complications from puncture place.

Materials and methods: we present retrospective analysis of clinical case of interventional treatment of myocardial infarction, with late post-puncture bleeding complication (41 day after PCI). Its consequences caused the thrombosis of the external iliac vein with further pulmonary embolism, and acute reocclusion of previously stented coronary artery

Results: developed complications were surgically treated (recurrent coronary stenting, elimination of defect of the femoral artery, implantation of cava filter with its subsequent removal), and thrombolytic therapy Patient was discharged to outpatient care without any indications of cardiopulmonary insufficiency and compensated arterial and venous circulation of operated lower limb. After 11 months, the patient’s condition was without negative dynamics with a satisfactory quality of life.

Conclusion: this clinical example demonstrates how difficult is to detect bleeding from a puncture wound. In cases of femoral access, the routine use of vascular closure devices can reduce the risk of bleeding complications. 

 

References 

1.    Rekomendacii po lecheniju ostrogo koronarnogo sindroma bez stojkogo pod#joma segmenta ST Evropejskogo obshhestva kardiologov [European cardiological society recommendation: treatment of acute coronary syndrome without stable ST-segment elevation]. Racional'naja farmakoterapija v kardiologii. 2012; 2: 2-64[In Russ].

2.    Sulimov V.A. Antitromboticheskaja terapija pri chreskozhnyh koronarnyh vmeshatel'stvah [Antithrombotic therapy during percutaneous coronary interventions]. Racional'naja farmakoterapija v kardiologii. 2008; 3: 91-100 [In Russ].

3.    Goloshhapov-Aksjonov R.S., Sitanov A.S. Luchevoj arterial'nyj dostup - prioritetnyj dostup dlja vypolnenii chreskozhnoj koronarnoj angioplasti

 

Abstract:

Background: this report describes our experience in CT-perfision (CTP) use for evaluation of rectal tumors neoadjuvant treatment effectiveness. Tumor response for combination of radiation and chemotherapy was related to CTP pattern.

Material and Methods: five patients aged 48 - 62 years with rectal adenocarcinomas histologically verified (4 patients of T3N0M0 stage and 1 patient T3N1 M0) were included. All of them had combined neoadjuvant radiotherapy and chemotherapy followed by surgery. Before and after neoadjuvant treatment virtual colonoscopy (VCS) with CTP was done in all the cases prior to surgical intervention.

Results and Conclusions: comparing perfusion pattern in rectal tumor and in normal tissue, we saw blood volume (BV) to be significantly increased, and mean transit time (MTT) moderately shortened in tumor tissues. Tumor tissue BV in neoadjuvant therapy responders was much higher than in those for whom the therapy appeared to be ineffective. On combination of radio- and chemotherapy, BVin tumor tissue significantly decreased, and MTT elongated.

 

References

1.      Bosset J."F. et al. Chemotherapy with Preoperative Radiotherapy in Rectal Cancer. N. Engl. J. Med. 2007; 357 (7): 728.

2.      Чиссов В.И.,  Дарьялова С.Л.  Избранные лекции  по  клинической  онкологии.  М.2000; 736.

3.      Bellomi M. et al. CT Perfusion for the Monitoring of Neoadjuvant Chemotherapy and Radiation Therapy in Rectal Carcinoma. Initial Experience. Radiology. 2007; 244: 486-493.

4.      Sahani V. et al. Assessing Tumor Perfusion and Treatment Response in Rectal Cancer with Multisection CT. Initial Observations. Radiology. 2005; 234: 785-792.

5.      Yee J. Virtual colonoscopy. Ed. by Galdino G.2008; 219.

6.      Хомутова Е.Ю. и др. Устройство для раздувания толстой кишки. Патент на полезную модель № 71072 от 14-05-2007 г. 2008.

7.      Силантьева Н.И., Цыб А.Ф. и др. Компьютерная томография в онкопроктологии.М.: 2007; 144.

 

authors: 

 

Abstract:

 

Primary angioplasty in patients with ST elevation myocardial infarction reduces mortality and reinfarction rate. Immediate restoration of myocardial perfusion has a direct impact on one-year mortality Achieving TIMI 3 flow in epicardial arteries does not mean that the myocardial perfusion has normalized. In addition to that, it is vital to evaluate alternative markers such as rapid resolution of the ST-segment elevation and restoration of optimal distal flow, blush grade 2-3. The intracoronary infusion of adenosine, administered prior to the opening of the artery limiting the size of the infarction and decreases the incidence of no-reflow phenomenon. Direct stent implantation without pre dilation significantly minimizes the incidence of adverse effects. The Amicath catheter (IHT-Cordynamic, Spain) that we use in patients with ST elevation myocardial infarction allow us to obtain an effective myocardial reperfusion, in different clinical situations avoiding the displacement of the thrombus, or a distal embolism, and preventing the no-reflow phenomenon.

 

References

1.     Stone G.W., Grines C.L., Cox D., et al. A prospective, randomized trial comparing balloon angioplasty with or without abciximab to primary stenting with or without abciximab in acute myocardial infarction: primary endpoint analysis from the CADILLAC trial. Circulation 2000; 102: II-664 (abstract).

2.     Stone G.W., Peterson M.A., Lansky A.J., et al.. Impact of normalized myocardial perfusion after successful angioplasty in acute myocardial infarction. J. Am. Coll. Cardiol. 2002 Feb. 20;39(4): 591-7.

3.     Napodano M., Pasquetto G., Saccа S., et al. Intracoronary thrombectomy improves myocardial reperfusion in patients undergoing direct angioplasty for acute myocardial infarction. J. Am. Coll. Cardiol. 2003; 42: 1395-1402.

4.     Svilaas T., Vlaar PJ., Iwan C., et al. Thrombus Aspiration during Primary Percutaneous Coronary Intervention. N. Engl. J. Med. 2008; 358:557-567 February 7, 2008 DOI: 10.1056/NEJ Moa 0706416.

5.     Mahaffey K.W., Puma J.A., Barbagelata N.A., et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial. J. Am. Coll. Cardiol. 1999 Nov 15; 34(6): 1711-20.

6.     Marzilli M., Orsini E., Maraccini P., Testa R. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation. 2000; 101: 2154-59.

7.     Loubeyre C., Morice M., Lefe'vre T., et al. A Randomized Comparison of Direct Stenting With Conventional Stent Implantation in Selected Patients With Acute Myocardial Infarction. JACC. 2002:39(1): 15-21.

8.     Gibson C.M., Maehara A., Lansky AJ., et al. Rationale and design of the INFUSE-AMI study: A 2Ч2 factorial, randomized, multicenter, single-blind evaluation of intracoronary abciximab infusion and aspiration thrombectomy in patients undergoing percutaneous coronary intervention for anterior ST-segment elevation myocardial infarction. Am. Heart. J. 2011 Mar; 161 (3): 478-486.e 7. doi: 10.1016/j. ahj. 2010.10.006. Epub 2011 Jan 28. 

 

Abstract:

An important clinical challenge the management of patients with pulmonary embolism is to determine prognosis of the treatment generally, and thrombolytic reperfusion therapy as the main component of a specific pathogenetic treatment in particular. This knowledge is necessary to adjust the plan of remedial measures, the intensification of concomitant pharmacotherapy and provide a personalized approach to patients with thromboembolic lesions of the pulmonary circulation

Aim: was to identify reliable predictors of the onset of reperfusion in patients with pulmonary thromboembolism based on methods of radiographic diagnosis.

Materials and Methods: 138 patients (73 women and 65 men) underwent examination. Age of patients ranged from 20 to 80 years (mean age 55±25 years). The first group includes observation of 102 patients admitted to hospital in early stages of disease ( 1 month after onset of symptoms). The second group consisted of 36 patients admitted to the hospital at a later date (from 1.5 to 12 months). In groups we studied predictors of pulmonary reperfusion channel on the basis of direct angiography and multislice computed tomography As a control, a diagnostic method used direct angiography, which has a high sensitivity and specificity in identifying symptoms of pulmonary embolism. Using the method of multiple logistic regression odds ratios were prepared to achieve reperfusion in patients with certain diagnostic symptoms compared with patients who have no signs data in angiography

Results: diagnostic criteria, in presence of which on angio-pulmonography significantly increased the likelihood of reperfusion are «amputation» of segmental branches of the pulmonary artery ( p<0.05, 16,55(6,50-42,09 ) ), intraluminal defects of contrast staining (p < 0.05, 30.56 (8,66-107,84)) and the absence of distal blood flow (p<0,05; 6,16(2,47-15,40)). Signs, significantly reducing chances of achieving reperfusion are tortuosity of segmental branches of the pulmonary artery (p<0,05; 0,03(0,01-0,08)), slowing of contrast branches of the pulmonary artery (p<0,05; 0,11( 0.05-0.25)), and the presence of defects in the near-wall staining (p<0,05; 73,182 (9,606-557,542)).

Conclusions: basing on results of modern beam-diagnostics may reliably predict the likelihood of reperfusion in patients with pulmonary embolism.

 

Список литературы:

1.     Котельников М.В. Тромбоэмболия легочной артерии (современные подходы к диагностике и лечению). М.: Медицина. 2002; 136.

2.     Рекомендации Европейского Кардиологического Общества (ЕКО) по диагностике и лечению тромбоэмболии легочной артерии (ТЭЛА). European Heart Journal. 2008; 29: 2276-2315.

3.     Darryl Y. Sue, MD (ed.): Pulmonary Disease. In Frederic

S.    Dongard, MD (ed.): Current: Critical Care Diagnosis & Treatment. US: А Lange medical book. First Edition. 496.

4.     Kline JA, SteuerwaldMT, Marchick MR, et al. Prospective evaluation of right ventricular function and functional status 6 months after acute submassive pulmonary embolism: frequency of persistent or subsequent elevation in estimated pulmonary artery pressure. Chest. 2009; 136: 1202-1210.

5.     Grifoni S., Olivotto I. et al. Short-term clinical outcome of patients with acute pulmonary embolism, normal blood pressure, and echocardiographic right ventricular dysfunction. Circulation. 2000; 101: 2817-2822.

6.     Kreit J.W. The impact of right ventricular dysfunction on the prognosis and therapy of normotensive patients with pulmonary embolism. Chest. 2004; 125: 1539-1545.

7.     Савельев В.С., Яблоков Е.Г, Кириенко А.И., Массивная эмболия легочных артерий. М.: Медицина. 1990; 336 

 

Abstract:

Coronary flow limitation during high risk angioplasty in acute coronary syndrome (ACS) patients is an important problem, connecting with inadequate myocardial protection during the coronary intervention.

Aim: was to compare intraoperative cardiohemodynamic in ACS patients during the high risk angioplasty of difficult stenoses in anterior heart arteries with- or without a coronary venous retroperfusion support.

Methods: intervention results of 14 ACS patients were analyzed. In 1st group there were 6 patients (42,9%) with intraoperative myocardial retroperfusion support. In 2nd group - 8 patients (57,1%) without any intraoperative myocardial perfusion support.

Results: during the retroperfusion support in the 1st group , «ST»-segment elevation at 60 sec left main (LM) or left anterior descending artery (LAD) occlusion was significantly lower (ST in V4-V6 - 1,9±1,7 mm) than in patients without retroperfusion (ST in V4-V6 - 3,1±1,7; p = 0,043). In the 2nd group, patients without coronary flow support the «ST»-segment elevation at 60 sec LM or LAD occlusion was significantly higher (ST в V4-V6 - 2,5±0,5; p = 0,043) than at 5 sec LM or LAD occlusion. No significant differences between «ST»-segment and «T»-wave deviation in the beginning and in the end of intervention were in both groups. The same dynamics was demonstrated at the time of blood pressure indexes measurement.

Conclusion: coronary venous retroperfusion is an effective method of coronary flow support during the high risk angioplasty in ACS patients. Retroperfusion technology had no influence on cardiohemodynamic, but reduced the risk of intraoperative adverse cardiac events. 

 

References

1.     Antman E.M., Anbe D.T., Armstrong P.W. et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of patients with acute myocardial infarction). J. Am. Coll. Cardiol. 2004; 44: E1-E211.

2.     Trusov V.V., Kazakova I.A., Kuznecov D.N. Analiz raboty pervichnogo sosudistogo centra na baze MUZ MSCh «ZhMASh» [Analysis of functioning of primary angiologic center on the base of medical-sanitary unit of «IZhMASh»]. PJeM . 2011; 43-44(3-4):20-22 [In Russ].

3.     Silber S., Albertsson P., Aviles F.F., et al. Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Eur. Heart J. 2005; 26: 804-847. P05-04673.

4.     Kononov A.V., Kostjanov I.Ju., Kuznecova I.Je., Aligishieva Z.A., Abil'dinova A.Zh., Cereteli N.V., Koledinskij A.G., Gromov D.G., Suhorukov O.E., Ioseliani D.G. Stentirovanie stvola levoj koronarnoj arterii u bol'nyh s razlichnymi formami ishemicheskoj bolezni serdca: blizhajshie i sredneotdalennye rezul'taty [Stenting of left main coronary artery in patients with different forms of ischemic heart disease: early- and long-term results.]. Mezhdunarodnyj zhurnal intervencionnoj kardioangiologii (Moskva). 2013;23: 26-33 [In Russ].

5.     ACC/AHA Guidelines for the Management of Patients with Unstable Angina and Non-ST-Segment Elevation Myocardial Infarction. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Unstable Angina). JACC. 2000; 36: 970-1062.

6.     ESC/EACTS Guidelines. Guidelines on myocardial revascularization/The Task Force on Myocardial Revascularization of the European Society of Cardiology and the European Association for Cardio-Thoracic Surgery (Developed with the special contribution of the European Association for Percutaneous Cardiovascular Interventions (EAP- CI). European Heart Journal.2010; 31: 2501-2555.

7.     Almany S.L. Interventional in patient with LV dysfunction. PI 57 in New manual of interventional radiology by Mark Freed et al. - Birmingham, Michigan: Physicians T. Press, 1997.

8.     ACC/AHA Guidelines for Percutaneous Coronary Intervention. PTCA Guidelines. JACC 2001; 37: 8: 2239-2306.

9.     Kardiologija: nacional'noe rukovodstvo [Cardiology: national guide-book] (pod red. Ju.N. Belenkova, R.G. Oganova) M.: GJeOTAR-Media, 2008; 1232 s [In Russ].

10.   Belov Ju.V. Varaksin V.A. Postinfarktnoe remodelirovanie levogo zheludochka serdca. Ot koncepcii k hirurgicheskomu lecheniju [Postinfarction remodeling of left atrium. From concept to surgical treatment]. M.: DeNovo, 2002; 5587 [In Russ].

11.   Shiller N.B., Osipov M.A. Klinicheskaja jehokardiografija [Clinical echocardiography]. M.: Praktika, 2005; 344 [In Russ].

12.   Serruys P.W., Onuma Y, Garg S. et all. Assessment of the SYNTAX score in the Syntax study. EuroIntervention. 2009; 5:50-56.

13.   Incorvati R.L., Tauberg S.G., Pecora M.G., et all. Clinical applications of coronary sinus retroperfusion during high risk percutaneous transluminal coronary angioplasty. JACC. 1993; 22(1): 127-34.

14.   Petrov V.I., Nedogoda S.V. «Medicina, osnovannaja na dokazatel'stvah»: Uchebnoe posobie [Medicine, based on evidence]. Moskva: Gjeotar-Media, 2009; 144 s [In Russ].

15.   Javelov I.S. Vybor antikoaguljanta dlja rannego lechenija ostrogo koronarnogo sindroma [Choise of anticoagulants for early treatment of acute coronary syndrome]. Trudnyj pacient (Moskva). 2013;11(10): 12-24 [In Russ].

16.   Lazar H.L. Coronary sinus retroperfusion: can forward progress still be achieved by using a backward technique? J. Thorac. Cardiovasc. Surg., 2004; 127(6): 1549-52.

17.   Zemgulis V., Wikstrom G., Bjerner T., Henze A., Lahtinen M., Waldens^m A., Thelin S., Ronquist G. Discrepant outcome between myocardial energy-related metabolites and infarct size limitation during retroperfusion of the coronary sinus. Scand. J. Clin. Lab. Invest. 2001; 61(8): 651-62.

18.   Leung W.H. Coronary and circulatory support strategies for percutaneous transluminal coronary angioplasty in high-risk patients. Am. Heart J., 1993; 125(6): 1727-38.

19.   Thiele H., Zeymer U., Neumann F.J. et all. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2013; 368:80-81. 

 

 

Abstract:

Acardiac fetus («acardiac monster», «acardiac vampire») - is rarely encountered pathology of pregnancy in which one of monochorionic fetuses (recipient) is formless mass, with absence of the heart and some internal organs, life and growth of which is related to parasitism on other fetus.

The main reason for the formation of this defect is an abnormal location of placental vessels ir monochorionic twins. Characteristic are the underdevelopment of the upper body of the recipient fetus (underdevelopment of the upper part of chest, the absence of heart or the presence of rudimentary heart) and acephaly

The article presents results of the analysis of the world literature data, and given own observation of acardiac fetus stillborn.

We specify frequency causes, as well as the clinical and morphological features such anomalies. Possibilities of the post-mortem magnetic resonance and computed tomography imaging in determining the type of acardiac fetus. According to results of the analysis, it was the most efficient construction and analysis of volumetric reconstruction of bone tissues.

Conclusion: post-mortem CT and MRI are advisable in some cases as a complement to the postmortem examination.

 

References

1.     Alderman B. Foetus acardius amorphus. Postgraduate Med. J. 1973; 49: 102-105.

2.     Chi J.G. Acardiac twins. J. Korean. Med. Sci. 1989; 4: 203-216.

3.     Benirschke K. The Monozygotic twinning process, the twin-twin transfusion syndrome and acardiac twins. Placenta. 2009; 3: 923-928.

4.     Obladen M. From monster to twin reversed arterial perfusion: a history of acardiac twins J. Perinat. Med. 2010; 38(3): 247-253.

5.     Dahiya P, Agarwal U, Sangwan K, Sen J. Antenatal diagnosis of twin-reversed arterial perfusion sequence (acardiac amorphous) in a triplet pregnancy: case report. Arch. Gynecol. Obst. 2004; 269: 147-148.

6.     Gillim D.L., Hendriks C.H. Holoacardius: review of the literature and case report. Obstet. Gynecol. 1953; 2: 647-653.

7.     Bhatnagar K.P, SharmaS.C., Bisker J. The holoacardius: a correlative computerized tomographic, radiologic, and ultrasonographic investigation of a new case with review of literature. Acta genet. med. Gemellot. 1986; 35: 77-89.

8.     Shchegolev A.I., Tumanova U.N., Shuvalova M.P., Frolova O.G. Vrozhdennie poroki kak prichina mertvorozhdeniya[Congenital anomalies as a cause stillbirth]. Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2015; 10 (2): 263-267 [In Russ].

9.     Demikova N.S., Lapina A.S. Vrozhdennie poroki razvitiya v regionah Rossiyskoi Federatsii (itogi monitoringa 2000-2010 gg. [Congenital malformations in regions of the Russian Federation (monitoring results for 2000-2010]. Rossijskij vestnik perinatologii i pediatrii. 2012; 2: 91-98 [In Russ].

10.   Fox H, Butler-Manuel R. A teratoma of the placenta. J. Pathol. Bacteriol. 1964; 88: 137-140.

11.   Thayyil1 S., Chitty L.S., Robertson N.J. et al. Minimally invasive fetal postmortem examination using magnetic resonance imaging and computerised tomography: current evidence and practical issues. Prenat. Diagn. 2010; 30: 713-718.

12.  Tumanova U.N., Fedoseeva V.K., Liapin V.M., Stepanov A.V., Voevodin S.M., Shchegolev A.I. Posmertnaya kompjuternaya tomographia mertvorozhdennikh s kostnoi patologiej [Computed Tomography of Stillborn with Bone Pathology]. Meditsinskaya vizualizatsiya. 2013; 5, 110-120 [In Russ].

13.  Fedoseeva V.K., Tumanova U.N., Liapin V.M. Voevodin S.M., Shchegolev A.I. Vozmozhnosti ispolzovaniya multispiralnoj kompjuternoi tomografii v posmertnoi diagnostike patologii plodov i novorozhdennikh. [Possibilities of use of a multispiral computer tomography in posthumous diagnosis of pathology of fetus and newborns]. REJR. 2014; 3 (S2): 448 [In Russ].

14.   Aghayev E., Staub L., Dirnhofer R., et al. Virtopsy - the concept of a centralized database in forensic medicine for analysis and comparison of radiological and autopsy data. J. Forensic. Leg. Med. 2008; 15: 135-140.

15.  Kokov L.S., Kinle A.F., Sinitsyn V.Y., Filimonov B.A. Voz- mozhnosti kompyuternoj i magnitno rezonansnoj tomografii v sudebno medicinskoj ehkspertize mekhanicheskoj travmy i skoropostizhnoj smerti obzor literatury. [Possibilities of computed tomography and magnetic resonance imaging in forensic medicalexamination of mechanical trauma and sudden death (a literature review)]. Zhwrnalim. N.V. Sklifosovskogo. Neotlozhnaya meditsinskaya pomoshch. 2015; 2: 16-26 [In Russ].

16.   Moore T.R., Gale S., Benirschke K. Perinatal outcome of forty nine pregnancies complicated by acardiac twinning. Am. J. Obstet. Gynecol 1990; 163: 907-912.

17.   Blickstein I., Keith G.L. Multiple pregnancy. Informa healthcare. 2005.

18.   Coulam С.В., Wright С. First trimester diagnosis of асаrdiас twins. Еагу Ргеgnаnсу 2000; 4: 261-270.

19.   Larsen W.J. Development of the heart. Human embryology. 2nd ed. Churchill Livingstone. 1997; 151-187.

20.   Baergen N.R. Manual of Pathology of the human placenta. 2nd ed. Springer Science+Business Media: LLC, 2011.

21.   Kamitomo М., Kouno S., Ibuka К. et al. First-trimester findings associated with twin reversed arterial perfusion sequence. Fetal Diagn. Ther. 2004; 19: 187-190.

22.  Ajlamazjan E.K., Pavlova N.G., Shelaeva E.V., Bezhenar V.F. Sindrom obratnoj arterialnoj perfuzii pri mnogoplodii obzor literatury i sobstvennyj opyt diagnostiki i fetalnoj hirurgii. [Syndrome of the return arterial perfusion at a mnogoplodiya: review of literature and own experience of diagnostics and fetalny surgery]. Prenat. diagn. 2012; 2: 178-184 [In Russ].

23.   Al-Malt А., Ashmead G., Judge N. et al. Color-ftow and Doppler velocimetry in prenatal diagnosis of acardiac triples. J. Ultrasound Med. 1991; 10: 341-345.

24.   Izquierdо I., Smith J., Gilson G. еt al. Twin, acardiac, acephalus. Fetus. 1992; 1: 1.

25.   Papa Т., Dao А., Bruner J.P Pathognomonic sign of twin reversed arterial perfusion using color Doppler sonography. J. Ultгаsоund Med. 1997; 16: 501-503.

26.   Sabourin J., DeDoming E., Chandra S., Jain V. Twin reversed arterial perfusion syndrome. J. Obstet. Gynaecol. Can. 2011; 33: 315.

27.   Mccurdy C.M., Childers J.M., Seeds J.W. Ligation of the umbilical cord of an acardiac-acephalous twin with an endoscopic intrauterine technique. Obstet. Gynecol. 1993; 82: S708-S711.

28.   Corbacioglu A., Gul A., Bakirci I.T. et al. Treatment of twin reversed arterial perfusion sequence with alcohol ablation or bipolar cord coagulation. Int. J. Gynaecol. Obstet. 2012; 117: 257-259.

29.   Weichert A., Kalache K., Hein P. et al. Radiofrequency ablation as a minimally invasive procedure in the treatment of twin reversed arterial perfusion sequence in twin pregnancy. J. Clin. Ultrasound. 2012; May 10. doi: 10.1002/jcu.21932.

30.   Tan T.YT., Sepulveda W. Acardiac twin: A systematic review of minimally invasive treatment modalities. Ultrasound Obstet. Gynecol. 2003; 22: 409-419.

31.   Sepulveda W., Sfeir D., Reyes M., Martinez J. Severe polyhydramnios in twin reversed arterial perfusion sequence: successful management with intrafetal alcohol ablation of acardiac twin and amniodrainage. Ultrasound Obstet. Gynecol. 2000; 16: 260-263.

 

 

 

 

Abstract:

Aim: was to estimate parameters of left ventricle (LV) perfusion and kinetics at ischemic chronic heart failure (CHF), which initial values are predictors of increased myocardial functional reserve and patients clinical status improvement as a result of revascularization.

Materials and methods: examined 157 patients (146 men and 11 women; age from 33 to 72 years) before and in 2 - 3 days after percutaneous coronary intervention with diagnosis: CAD, CHF with NYHA class III-IV echocardiography parameters of LV: ejection fraction less than 40%, end-diastolic volume is more than 200 ml. Perfusion and function disorders were estimated with use of ECG-gated single photon emission computed tomography (SPECT).

Results: in 48% of cases 6-minute walk test increased more than 150%; NYHA class decreased by 2 classes (group 1). In 52% cases 6-minute walk test increased less than 50% and the NYHA class decreased on 1 class or did not change (group 2). Comparison of initial LV condition and clinical effect revealed following conformities. The revascularization effect is limited not to extent of coronary blood flow recovery, but first of all a cardiac muscle condition, the quantitative relation of the functioning myocardium and a focal cardiosclerosis. Thus, critical size to define the favorable forecast of revascularization is perfusion disorder more than a half of LV and kinetics disorder more than a third of cardiac muscle volume. Prevalence of a cardiosclerosis over the functioning myocardium limits clinical effect of a revascularization and growth of a functional reserve.

Conclusion: degree of initial LV myocardium perfusion and movement disorders at patients with severe ischemic heart failure is the key indicator, influencing clinical efficiency of coronary intervention

 

References

1.     Ageev F.T., Belenkov Yu.N., Fomin I.V., et al. Rasprostranennost hronicheskoj serdechnoj nedostatochnosti v Evropejskoj chaste Rossijskoj Federacii - dannye JEPOHA-HSN [The prevalence of chronic heart failure in the European part of the Russian Federation - Data AGE-CHF]. Serdechnaya nedostatochnost. 2006;7(1):112-115 [In Russ].

2.     Bax J.J., Delgado V. Myocardialviability as integral-part of the diagnostic and therapeutic approach to ischemic heart failure. J Nucl Cardiol. 2015 Apr;22(2): 229-45.

3.     Mareev V.Yu., Danielyan M.O., Belenkov Yu.N., Ot imeni rabochej gruppy issledovaniya JEPOHA-O-HSN. Sravnitelnaya harakteristika bolnyh s HSN v zavisimosti ot velichiny FV po rezultatam Rossijskogo mnogocentrovogo issledovaniya JEPOHA-O-HSN [On behalf of the working group study AGE-O-CHF. Comparative characteristics of patients with CHF, depending on the size of the PV on results of Russian studies mnogotsentrovogo AGE-O-CHF]. Serdechnaya nedostatochnost. 2006;7 (4):164-171 [In Russ].

4.     Samady H., Elefteriades J.A., Abbott B.G., et al. Failure to improve left ventricular function after coronary revascularization for ischemic cardiomyopathy is not associated with worse outcome. Circulation. 1999;100:1298- 304.

5.     Patel H.C., Ellis S.G.Role of revascularization to improveleft ventricular function. Heart Fail Clin. 2015 Apr; 11(2):203-14.

6.     Yancy C.W., Jessup M., Bozkurt B., et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary. J Am Coll Cardiol 2013;62:1495-539.

7.     McMurray J.J., Adamopoulos S., Anker S.D., et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787-847.

8.     Fonseca C., Morais H., Mota T., Matias F., Costa C., Gouveia-Oliveira A., Ceia F. EPICA Investigators. The diagnosis of heart failure in primary care: value of symptoms and signs. Eur J Heart Fail. 2004 Oct; 6(6):795-800, 821-2.

9.     Shabana A., El-Menyar A. Myocardial viability: what we knew and what is new. Cardiol Res Pract. 2012; 2012:607486.

10.   Ling L.F., Marwick T.H., Flores D.R., Jaber W.A.. Brunken R.C., Cerqueira M.D., Hachamovitch R.Identification of therapeutic benefit from revascularization in patients with left ventricular systolic dysfunction: inducible ischemia versus hibernating myocardium. Circ Cardiovasc Imaging. 2013 May 1;6(3):363-72.

11.   Schinkel A.F., Poldermans D., Rizzello V., Vanoverschelde J.L., Elhendy A., Boersma E., Roelandt J.R., Bax J.J. Why do patients with ischemiccardiomyopathy and a substantialamount of viablemyocardium not always recover in function after revascularization? J Thorac Cardiovasc Surg. 2004 Feb;127(2):385-90.

12.   Mandegar M.H., Yousefnia M.A., Roshanali F., Rayatzadeh H., Alaeddini F. Interaction between two predictors of functional outcome after revascularization in ischemic cardiomyopathy: left ventricular volume and amount of viable myocardium. J Thorac Cardiovasc Surg. 2008 Oct; 136(4):930-6.

13.   Beanlands R.S.B., Dawood F., Wen W.H. et al. Are the kinetics of technetium 99m-methoxy isobutyl isonitrile affected by cell metabolism and viability? Circulation. 1990; 82:1802-1814.

14.   Rizzello V., Schinkel A.F., Bax J.J., et al. «Individual prediction of functional recovery after coronary revascularization in patients with ischemic cardiomyopathy: the scar-to-biphasic model» Am J Cardiol. 2003 Jun 15;91 (12): 1406-9.

15.   Chestuhin V.V., Mironkov A.B., Bljahman F.A., Ostroumov E.N., Kolchanova S.G., Shkljar T.F., Azoev Je.T., Sahovskij S.A. Vlijanie polnoty revaskuljarizacii serdca na funkcional'noe sostojanie miokarda pri ishemicheskoj kardiomiopatii [Influence of completeness of coronary revascularization on the functional state of the myocardium in ischemic cardiomyopathy.]. Vestnik transplantologii i iskusstvennyh organov. 2013: 14(4):55-63 [In Russ].

16.   Bax J.J., Visser F.C., Poldermans D., et al. Time course of functional recovery of stunned and hibernating segments after surgical revascularization. Circulation. 2001; 104(Suppl 1):I314 -8.

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы