Website is intended for physicians
Search:

 

Abstract:

Background: pulmonary hypertension not only aggravates the course of myocardial infarction, but also significantly worsens the prognosis, increasing disability and mortality due to the steadily progressing course. The need to predict the development of pulmonary hypertension in patients with myocardial infarction is not in doubt, since a clear clinical picture manifests itself only in the late stages of the disease, when the effectiveness of the treatment reduces and its cost increases.

Aim: was to define most significant factors, influencing the development of pulmonary hypertension in the subacute period of myocardial infarction to elaborate a model for predicting this pathological condition.

Material and methods: study included 451 men aged 18-60 y.o. with a verified diagnosis of myocardial infarction. All patients underwent a standard diagnostic algorithm, including a comprehensive echocardiographic examination - in first 48 hours and at the end of the third week of the disease. The study group included 84 patients with pulmonary hypertension, which had occurred at the end of the third week of the disease at an initially normal level of mean pressure in the pulmonary artery. Control group consisted of 367 patients with a normal level of mean pulmonary artery pressure in both phases of the study or normalization of this indicator at the end of the subacute period of the disease. Using multivariate analysis of variance from the analytical base, we selected parameters associated with levels of mean pulmonary artery pressure, the proportion of patients with first­time pulmonary hypertension at the end of the subacute Ml. Then, with step-by-step and binary logistic regressions, most sensitive of them were selected for the prognostic model.

Results: study established a number of significant for the development of pulmonary hypertension in the subacute period of myocardial infarction clinical and anamnestic (heart rate, diastolic blood pressure, the presence of pulmonary edema and chronic lung diseases), laboratory (concentrations of the sodium, potassium, chloride; glucose, some parameters of lipid concentration in the blood plasma) and instrumental (the value of left atrium, end-diastolic size of the right ventricle, values of indices of end-systolic and end-diastolic left ventricular volumes, cardiac index, total pulmonary resistance, the presence of regurgitation at the aortic valve) parameters. Final prognostic model included mean pulmonary artery pressure, heart rate and the presence of aortic valve regurgitation of the second degree and higher in first 48 hours of myocardial infarction. Characteristics of the resulting model allow us to recommend it for practical use.

Conclusions: using a combination of these predictors, as well as prognostic modeling, makes it possible to distinguish among men under 60 years, a high-risk group for the development of pulmonary hypertension in the subacute period of the disease in order to conduct timely additional diagnostic and therapeutic measures.

 

References

1.     Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology and the European Respiratory Society: Endorsed by: Association for European Pediatric and Congenital Cardiology, International Society for Heart and Lung Transplantation. Eur Heart J. 2016;37(1): 67-119. PMID:26320113.

https://doi.org/10.1093/eurhearti/ehv317

2.     Haeck ML, Hoogslag GE, Boden H, et al. Prognostic Implications of Elevated Pulmonary Artery Pressure After ST-Segment Elevation Myocardial Infarction. Am J Cardiol. 2016; 118(3): 326-31. PMID: 27265675.

https://doi.orq/10.1016/i.amicard.2016.05.008

3.     Thygesen K, Alpert JS, Jaffe AS, et al. Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018;72(18):2231-2264. PMID: 30153967.

https://doi.org/10.1016/i.iacc.2O18.08.1038

4.     Lang RM, Badano LP, Mor-AviV, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16(3): 233-70. PMID: 25712077.

https://doi.org/10.1093/ehici/iev014

5.     Erlikh AD. Novel score for mortality risk prediction 6 months after acute coronary syndrome. Russian Journal of Cardiology. 2020;25(2):3416 [In Russ].

https://doi.org/10.15829/1560-4071 -2020-2-3416

6.     Sotnikov AV, Epifanov SYu, Kudinova AN etal. Predictors of recurrent ischemic damages in men under 60 years of age with myocardial infarction. Science of the young (Eruditio Juvenium) 2019; 7(4): 565-574 [In Russ].

http://doi.org/10.23888/HMJ201974565-574

7.     Panev Nl, FilimonovSN, Korotenko OYu et al. System for predicting the probability of developing respiratory failure in chronic mechanic bronchitis. Medicine in Kuzbass. 2017;16(3): 52-56 [In Russ].

8.     Bax JJ, Di Carli M, Narula J, Delgado V. Multimodality imaging in ischaemic heart failure. Lancet. 2019;393(10175):1056-1070. PMID: 30860031.

https://doi.org/10.1016/S0140-6736(18)33207-0

9.     Sheludko EG, Naumov DE, Prikhodko AG, Kolosov VP. Clinical and functional peculiarities of comorbid obstructive sleep apnea syndrome and asthma. Bulletin Physiology and Pathology o f Respiration. 2019; (71): 23-30 [In Russ].

http://doi.org/10.12737/article_5c88b5e86b9c18.75963991

10.   Chistyakova MV, Govorin AV, Radaeva EV. Opportunities for prediction of pulmonary hypertension development in patients with viral liver cirrhosis. Russian Journal of Cardiology. 2017;(4):70-74 [In Russ].

https://doi.org/10.15829/1560-4071-2017-4-70-74

11.   Agapitov LI. Diagnostics and treatment of childish pulmonary arterial hypertension. Diagnostics and treatment of childish pulmonary arterial hypertension. Lechaschi Vrach Journal. 2014; 4: 50 [In Russ].

12.   Laletin DA, Bautin AE, Rubinchik VE, Mikhailov AP. Right ventricle contractility during early postoperative period after coronary artery bypass grafting with cardiopulmonary bypass. Circulation Pathology and Cardiac Surgery. 2014; 18(3): 34-38 [In Russ].

13.   Kirillova W. Early ultrasound detection of venous congestion in pulmonary circulation in patients with chronic heart failure. Russian Heart Failure Journal. 2017; 18(3):208-212 [In Russ].

http://doi.org/10.18087/RHFJ.2017.3.2315

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы