Website is intended for physicians
Search:

 

Abstract:

Aim: was to study in-hospital results of high-risk percutaneous coronary intervention (PCI) with extracorporeal circulatory support.

Material and methods: a single center, retrospective study was performed in 49 adult patients undergoing high-risk PCI with mechanical circulatory support (cardiopulmonary bypass - CPB and еxtracorporeal membrane oxygenation – ECMO) performed in high-risk patients with acute coronary syndrome, multiple coronary lesions and impaired ejection fraction between 2011 to 2019. Mean age was 64,4±6,7 years. Previous myocardial infarction had 38(77%) patients, 18(37%) patients had a history of previous cardiac surgery. In 18(37%) patients, ejection fraction (Simpson) was less than 30%. Mean value of the left main (LM) artery stenosis was 74,6±8,9%, while combined with occlusion or subocclusion right coronary artery (RCA) in 38(77%) patients. Multivessel coronary lesion had 42(86%) patients (average SYNTAX Score was 42,1±11,5 points)

Results: 17 patients (35%) underwent high-risk PCI under preventional mechanical circulatory support with CPB. Myocardial infarction, strokes, stent thrombosis, limb ischemia, lethal outcomes were not observed in these patients. 7(14%) patients were admitted to the Cath Lab with myocardial infarction complicated by cardiogenic shock, in 3 patients – with pulmonary edema. 12(24%) patients after previous heart surgery were admitted to the Cath Lab after cardiopulmonary resuscitation on extracorporeal circulatory support, four of them (8%) with ongoing chest compressions. In 6(12%) patients, during CAG/PCI, critical hemodynamic instability was observed, induced by incurable cardiac arrhythmias required an emergency extracorporeal support. Average time of extracorporeal circulatory support was 128,62±92,4 min. Complications associated with CPB and ECMO were not observed. Two patients (4%) had stroke in the postoperative period. Hospital mortality was 17(34,7%) patients.

Conclusion: extracorporeal circulatory supports provide good life maintenance for high-risk PCI and an possibility for emergency PCI in extreme clinical situations.

  

 

References

1.     Phillips S, Zeff R, Kongtahworn C, et al. Percutaneous cardiopulmonary bypass: application and indication for use. Ann Thorac Surg. 1989; 47: 121-123.

https://doi.org/10.1016/0003-4975(89)90252-x

2.     Taub J, L'Hommedieu B, Raithel S, et al. Extracorporeal membrane oxygenation for percutaneous coronary angioplasty in high risk patients. ASAIO. Trans. 1989. 35(3): 664-6.

https://doi.org/10.1097/00002480-198907000-00161

3.     Rihal C, Naidu S, et al. Society for Cardiovascular Angiography and Interventions (SCAI); Heart Failure Society of America (HFSA); Society of Thoracic Surgeons (STS);American Heart Association (AHA) and American College of Cardiology (ACC). 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care: Endorsed by the American Heart Assocation, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologied 'intervention. J Am Coll.Cardiol. 2015; 65(19): 7-26.

https://doi.org/10.1016/j.jacc.2015.03.036

4.     Wijns W, Kolh P, Danchin N, et al. Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2010; 31: 2501-2555.

https://doi.org/10.1093/eurheartj/ehq277

5.     Thiele H, Zeymer U, Neumann F, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomized, open-label trial. Lancet. 2013; 382: 1638-1645.

https://doi.org/10.1016/S0140-6736(13)61783-3

6.     O’Gara P, Kushner F, Ascheim D, et al. 2013 ACCF/AHA guideline for management of ST-elevation myocardial infarction. J Am Coll Cardiol. 2013; 61: 78-140.

https://doi.org/10.1016/j.jacc.2012.11.019

7.     Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014; 35: 2541-2619.

https://doi.org/10.1093/eurheartj/ehu278

8.     De Waha S, Desch S, Eitel I, et al. Reprint of «intraaortic balloon countrpulsation – basic principles and clinical evidence». Vascul Pharmacol. 2014; 61: 30-34.

https://doi.org/10.1016/j.vph.2014.03.002

9.     Aggarwal B, Aman W, Jeroudi O, Kleiman N. Mechanical Circulatory Support in High-Risk Percutaneous Coronary Intervention. Methodist Debakey Cardiovasc J. 2018; 14(1): 23-31.

https://doi.org/10.14797/mdcj-14-1-23

10.   Jones H, Kalisetti D, Gaba M, et al. Left ventricular assist for high-risk percutaneous coronary intervention. J Invasive Cardiol. 2012; 24(10): 544-50.

11.   Zeymer U, Vogt A. Predictors of in-hospital mortality in 1333 patients with acute myocardial infarction complicated by cardiogenic shock treated with primary percutaneous coronary intervention (PCI). Eur Heart J. 2004; 25: 322-328.

https://doi.org/10.1016/j.ehj.2003.12.008

12.   Nichol G, Karmy-Jones R, Salerno C, et al. Systematic review of percutaneous cardiopulmonary bypass for cardiac arrest or cardiogenic shock states. Resuscitation. 2006; 70: 381-394.

https://doi.org/10.1016/j.resuscitation.2006.01.018

13.   Takayama H, Truby L, Koekort M, et al. Clinical outcome of mechanical circulatory support for refractory cardiogenic shock in the current era. J Heart Lung Transplant. 2013; 32: 106-111.

https://doi.org/10.1016/j.healun.2012.10.005

14.   Ternus B, Jentzer J, Bohman K, et al. Initiation of Extracorporeal Membrane Oxygenation in the Cardiac Catheterization Laboratory: The Mayo Clinic Experience. J Invasive Cardiol. 2020; 32(2): 64-69.

15.   O'Neill W, Schreiber T, Wohns D, et al. The current use of Impella 2.5 in acute myocardial infarction complicated by cardiogenic shock: results from the USpella Registry. J Interv Cardiol. 2014; 27(1): 1-11.

https://doi.org/10.1111/joic.12080

16.   Atkinson T, Ohman E, O'Neill W, et al. Interventional Scientific Council of the American College of Cardiology. A Practical Approach to Mechanical Circulatory Support in Patients Undergoing Percutaneous Coronary Intervention: An Interventional Perspective. JACC Cardiovasc Interv. 2016; 9(9): 871-83.

https://doi.org/10.1016/j.jcin.2016.02.046

17.   Ganyukov VI, Popov VA, Shukevich DL. Hospital outcomes of percutaneous coronary intervention with biventricular circulatory support in combination with extracorporeal membrane oxygenation. Kardiologiya i serdechno-sosudistaya hirurgiya. 2014; 1: 15-20 [In Russ].

18.   Bazylev VV, Evdokimov ME, Pantyuhina MA, Morozov ZA. Cardiopulmonary bypass for high-risk percutaneous coronary interventions. Angiologiya i sosudistaya hirurgiya. 2016; 22: 112-118 [In Russ].

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы