Abstract: Introduction: treatment of splenic artery aneurysms is a complex and urgent task of modern surgery. With the development of endovascular techniques, it became possible to use fundamentally new minimally invasive methods for correction of this pathology, the essence of which is to exclude the aneurysm from the blood flow by embolization. Case report: the article presents a case report of a young female patient without previous anamnesis, during regular examination, in which ultrasound examination, subsequent CT examination and angiography revealed saccular aneurysm of the proximal third of the splenic artery sized 22?24 mm. Patient underwent successful endovascular embolization of aneurysm with microcoils and Onyx adhesive composition using balloon assistance performed through the transradial vascular access. Conclusion: world experience and presented case report indicate high efficiency and relative safety of endovascular embolization of splenic artery aneurysms even under the condition of pathological vessel tortuosity, which significantly complicates the intervention, and also demonstrate the advantages of using transradial access in such anatomically difficult situations. References 1. Pitton MB, Dappa E, Jungmann F, et al. Visceral artery aneurysms: Incidence, management, and outcome analysis in a tertiary care center over one decade. Eur. Radiol. 2015; 25: 2004-2014. 2. Kassem MM, Gonzalez L. Splenic Artery Aneurysm. StatPearls Publishing. 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430849/ 3. Mesbahi M, Zouaghi A, Zaafouri H, et al. Surgical management of splenic artery aneurysm. Ann Med Surg (Lond). 2021; 69: 102712. 4. Lakin RO, Bena JF, Sarac TP, et al. The contemporary management of splenic artery aneurysms. Journal of Vascular Surgery. 2011; 53: 958-965. 5. Veluppillai C, Perreve S, de Kerviler B, Ducarme G. Splenic arterial aneurysm and pregnancy: A review. Presse Med. 2015; 44(10): 991-4. 6. T?treau R, Beji H, Henry L, et al. Arterial splanchnic aneurysms: Presentation, treatment and outcome in 112 patients. Diagn. Interv. Imaging. 2016; 97: 81-90. 7. Patel A, Weintraub JL, Nowakowski FS, et al. Single-center experience with elective transcatheter coil embolization of splenic artery aneurysms: technique and midterm follow-up. J. Vasc. Interv. Radiol. 2012; 23: 893-899. 8. Hogendoorn W, Lavida A, Hunink MG, et al. Open repair, endovascular repair, and conservative management of true splenic artery aneurysms. J. Vasc. Surg. 2014; 60: 1667-1676. 9. Reed NR, Oderich GS, Manunga J, et al. Feasibility of endovascular repair of splenic artery aneurysms using stent grafts. J Vasc Surg. 2015; 62(6): 1504-10. 10. Posham R, Biederman DM, Patel RS, et al. Transradial approach for noncoronary interventions: a single-center review of safety and feasibility in the first 1,500 cases. J. Vasc. Interv. Radiol. 2015; 27(2): 159-166.
Abstract: Pancreatic cancer (PC) is one of the most aggressive malignant neoplasms, results of treatment of which remain extremely unsatisfactory, in view of the low (20%) possibility of tumor resectability A relatively new method of treatment of pancreatic cancer, which showed in practice an increase in tumor resectability in patients with borderline resectable forms of the disease and an increase ir survival mediana of inoperable patients is transartorial chemoembolization (TACE).of pancreatic arteries. Authors first used transradial vascular access for TACE of a malignant pancreatic tumor. As the first stage of the intervention - performed redistribution embolization of the right gastroomental artery distally to branches feeding the tumor, with two pushable coils Azur (Terumo) sized 4x60 mm and 5x60 mm in order to prevent embolization of non-target vessels and achieve total embolization of the tumor. The second stage - performed chemoembolization with lipiodol - 5 ml and gemcitabine - 1000 mg, as a result - accumulation of chemotherapy in the head of the pancreas. The duration of the procedure and the radiation dose in the patient were 52 minutes, respectively and 0.57 mSv and were comparable to those for similar interventions through transfemoral access. At the same time, all the main advantages of access through the radial artery remained, including: a higher level of psychological and functional comfort for the patient, its early activation and a minimal risk of vascular complications. The patient's discharge was made on the 10th day after the intervention. References 1. Kubyshkin V.A., Vishnevskiy V.A. Rak podzheludochnoi zhelezy [Pancreatic cancer]. 2. Nitecki S.S., Sarr M.G., Colby T.V. et al. Long-term survival after resection for ductal adenocarcinoma of the pancreas. Is it really improving? Ann. of Surg. 1995; 221(1):59-66 3. Ishikawa O., Ohigashi H., Imaoka S. et al. Is the longterm survival rate improved by preoperative irradiation prior to Whipple’s procedure for adenocarcinoma of the pancreatic head? Arch. Surg. 1994; 129(10):1075-1080. 4. Pavlovskiy A.V. Maslyanaya khimioembolizatsiya arteriy podzheludochnoi zhelezy pri mestnorasprostranennom rake. [Oily chemoembolization of pancreatic arteries in patients with locally advanced cancer]. Prakticheskaya onkologiya. 2004; 5(2):108-114 [In Russ]. 5. A.A., Tarazov P.G., Ivanova A.A., Alejnikova O.V. Diagnostika I lechenie toksicheskih oslozhnenij regionarnoj himioterapii, provodimoj cherez chreskozhno implantiruemye sistemy. [Diagnostics and treatment of toxic complications of regional chemotherapy through port-system] Diagnosticheskaya i intervencionnaya radiologiya. 2007; 1 (3): 46-51. [In Russ]. 6. Chandrasekar B., Doucet S., Bilodeau L. et al. Complications of cardiac catheterization in the current era: a single-center experience. Catheter Cardiovasc. Interv. 2001; 52(3):289-295. 7. Sherev D.A., Shaw R.E., Brent B.N. Angiographic predictors of femoral access site complications: implication for planned percutaneous coronary intervention. Catheter Cardiovasc. Interv. 2005; 65(2): 196-202. 8. Tavris D.R., Gallauresi B.A., Lin B. et al. Risk of local adverse events following cardiac catheterisation by hemostasis device use and gender. J. Invasive Cardiol. 2004; 16(9):459-464. 9. Mclvor J., Rhymer J.C. 245 transaxillary arteriograms in arteriopathic patients: success rate and complications. Gin. Radiol. 1992; 45: 390-394. 10. Jolly S.S., Yusuf S., Cairns J. et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011; 377(9775):1409-1420. 11. Kanei Y, Kwan T., NakraN.C. et al. Transradial cardiac catheterization: A review of access site complications. Catheter Cardiovasc. Interv. 2011. 12. Caputo R.P., Tremmel J.A., Rao S. et al. Transradial arterial access for coronary and peripheral procedures: Executive summary by the transradial committee of the SCAI. Catheter Cardiovasc. Interv. 2011.
Abstract: We present case report of patient, with recurrent pulmonary bleeding of malignant genesis and ineffective previous endoscopic hemostasis. During embolization of bronchial artery, to stop massive life-threatening pulmonary bleeding, transradial approach was used for the first time. Full bleeding control was reached after embolization of right bronchial artery with use of microspheres through microcatheter 2,8 Fr. During hospital stage, recurrence of bleeding was not notices; patient discharged on the 7th day in satisfactory condition. Duration of procedure and radiation exposure at this patient were comparable with same parameters in case of transfemoral approach. Main advantages of this vascular access are increased comfort of the patient after the procedure and the possibility of early activization. Besides, use of transradial vascular approach provides decreased frequency of complications, that is very important among patients with signs of respiratory insufficiency, because of the inability of these patients to stay in bed within a day. References 1. Cowling M.G., Belli A.M. A potential pitfall in bronchial artery embolization. Clin. Radiol. 1995; 50: 105-107. 2. Haponik E.F., Fein A., Chin R. Managing life-threatening hemoptysis: has anything really changed? Chest. 2000; 118: 1431-1435. 3. Hirshberg B., Biran I., Glazer M. et al. Hemoptysis: etiology, evaluation, and outcome in a tertiary referral hospital. Chest. 1997; 112: 440-444. 4. Saluja S., Henderson K.J., White R.I. Embolotherapy in the bronchial and pulmonary circulations. Radiol. Clin. North Am. 2000; 38: 425-448. 5. Chandrasekar B., Doucet S., Bilodeau L. et al. Complications of cardiac catheterization in the current era: a single-center experience. Catheter Cardiovasc. Interv. 2001; 52(3): 289-295. 6. Sherev D.A., Shaw R.E., Brent B.N. Angiographic predictors of femoral access site complications: implication for planned percutaneous coronary intervention. Catheter Cardiovasc. Interv. 2005; 65(2): 196-202. 7. Tavris D.R., Gallauresi B.A., Lin B. et al. Risk of local adverse events following cardiac catheterisation by hemostasis device use and gender. J. Invasive Cardiol. 2004; 16(9): 459-464. 8. Mc. Ivor J., Rhymer J.C. 245 transaxillary arteriograms in arteriopathic patients: success rate and complications. Gin. Radiol. 1992; 45: 390-394. 9. Jolly S.S., Yusuf S., Cairns J. et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011; 377(9775): 1409-1420. 10. Kanei Y, Kwan T., Nakra N.C. et al. Transradial cardiac catheterization: A review of access site complications. Catheter Cardiovasc. Interv. 2011. 11. Caputo R.P., Tremmel J.A., Rao S. et al. Transradial arterial access for coronary and peripheral procedures: Executive summary by the transradial committee of the SCAI. Catheter Cardiovasc. Interv. 2011.