Abstract: Introduction: treatment of patients with bilobar metastatic liver disease remains an unsolved problem. Among methods of regional chemotherapy, the least studied is isolated liver chemoperfusion, which is an unpopular technique due to its high trauma and difficult reproducibility. Aim: was to demonstrate the method of endovascular isolated liver chemoperfusion (EILHP) developed by us. Case report: EILCP was performed using a heart-lung machine (HLM) in a patient with cancer of the rectum, stage 2 (pT3N0M0), after combined treatment (radiation therapy (SOD 60 Gy) + anterior resection of the rectum in 2007). Disease progression. Isolated metastatic liver disease (01.2021). Isolated chemoperfusion was performed endovascularly using 2-balloon catheters, which provided vascular isolation of the liver and its isolated perfusion during the procedure. Posi- tioning of balloon catheters was performed in an open way through femoral artery and vein. Perfusion was carried out for 30 minutes with chemotherapy drugs (CtD) oxaliplatin 42,5 mg/m2 and irinotecan 82,5 mg/m2 injected directly into the circuit. Results: the duration of intervention was 160 minutes, intraoperative blood loss was 50 ml. During insertion and positioning of aortic balloon, a limited dissection of the aorta developed in area of left common iliac artery deviation, which did not require any intervention in postoperative period. Duration of intensive care unit stay was 1 day. There were no complications associated with aortic dissection during 3-month follow-up. Level of ALT and AST remained within reference values during entire postoperative period. No hematological toxicity was observed. Patient was discharged on the 7th day after operation in satisfactory condition. Patient underwent control CT scan of abdominal organs, 30 days after endovascular isolated chemoperfusion of the liver. According to the RECIST scale, stabilization of tumor process was noted. Conclusions: proposed technique of endovascular isolated liver chemoperfusion is technically feasible and safe. The use of this method may be appropriate in treatment of patients with isolated liver metastases who require dose reduction of chemotherapeutic agents due to their severe toxicity or high patient comorbidity.
Abstract: Aim: was to estimate long-term results of vertebral artery (VA) stenting in patients with vertebrobasilar insufficiency (VBI). Material and methods: study included 194 patients with VBI caused by lesion of V1 segment of VA. All patients received the best course of drug therapy before admission to the clinic. In all these patients, atherosclerotic stenosis of 70% or more of VA was revealed in V1 sergment. All patients underwent surgical correction of V1 segment of VA. Open surgery was performed in «A» group – with a tortuosity of VA – 129(66,5%), in group «B» – without tortuosity of a VA – 65(33,5%) performed stenting of V1 segment of PA. Bare-metal stents were implanted in 44 patients, drug-eluted stents - 14, renal stents – 7. Distal protection was used in 14 patients. In remaining patients, stenting was performed without embolic protection devices. Main criteria for evaluating of results were: patency of the reconstruction zone and clinical improvement in the patient after surgery. Statistical processing of results was carried out by calculating ?2, the exact Fisher test (EFT) and constructing of Kaplan-Meier survival curves. Results: it was determined that in «hopeless» patients, from the point of view of drug treatment, it is possible to achieve a significant clinical effect by surgical methods. Of 194 patients, clinical improvement in the early postoperative period was achieved in 189(97,4%) patients, after 1 year in 177 (91,2%) patients, and after 3 years in 156(80.2%) patients. In case of stenting of V1 segment of VA – we received excellent immediate results – 100% of technical and clinical success. However, in the long term, results of open operations were better than results of stenting. 3 years after operation, a higher clinical efficacy of open methods was determined – 79,8%, in contrast to stenting – 73,8%. Although, differences were not statistically significant (p> 0,05). 3 years after operation, in case of open operations, a significantly smaller number of restenosis of the reconstruction zone was 1.6%, than with stenting – 15,4% (p <0.05). However, in patients with open operations, more thrombosis of the reconstruction zone were revealed – 5,5% than in patients with stenting – 1.5% (p>0,05). When performing open operations on V1 segment of VA, strokes were fewer – 2.3%, than in group of V1 stenting segment of VA – 3.1% (p> 0.05). When comparing Kaplan-Meyer curves, the median during open surgeries on VA is not achieved after 18 years, and in group of stenting of VA, it occurs after 7 years. Conclusion: stenting of V1 segment of vertebral arteries in patients with VBI is not the operation of choice in terms of long-term results. However, this operation can be considered as the first stage of brain revascularization in the presence of significant stenosis of V1 segment of vertebral artery and low brain tolerance to ischemia in patients with multiple lesions of brachiocephalic arteries. References 1. Savitz SI, Caplan LR: Vertebrobasilar disease. N Engl J Med. 2005; 352:2618-2626. 2. Caplan LR, Wityk RJ, Glass TA, Tapia J, Pazdera L, Chang HM, Teal P, Dashe JF, Chaves CJ, Breen JC, Vemmos K, Amarenco P, Tettenborn B, Leary M, Estol C, Dewitt LD, Pessin MS: New England Medical Center Posterior Circulation registry. Ann Neurol. 2004; 56:389-398. 3. Vereschagin NV. Pathology of vertebrobasilar system and cerebrovascular accidents. M. 1980; 312. [In Russ]. 4. Puzin MN, Zinoveva GA, МеtelkinaLP. Aspects of medical treatment of patients with vertebrobasilar insufficiency. Klinicheskaya farmakologiya i terapia, 2006; 2: 23-26. [In Russ]. 5. Berguer R, Morasch M, Kline R. A review of 100 consecutive reconstructions of the distal vertebral artery for embolic and hemodynamic disease. J Vasc Surg. 1998; 27 (5): 852-859. 6. Pokrovskii AV, Belojarcev DF. Long-term results of operations subclavian-carotid transposition. Angiologiya i sosudistaya khirurgiya 2002; 8 (2): 84 - 91. [In Russ]. 7. He Y, Bai W, Li T et al. Perioperative complications of recanalization and stenting for symptomatic nonacute vertebrobasilar arteryocclusion. Ann Vasc Surg. 2014 Feb; 28 (2):386-393. 8. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018 Mar 1; 39(9): 763-816. 9. National guidelines on the management of patients with brachiocephalic artery disease. Angiologiya i sosudistaya khirurgiya. 2013; 19 (2), appendix: 70 [In Russ]. 10. Schonewille WJ, Algra A, Serena J, Molina CA, Kappelle LJ. Outcome in patients with basilar artery occlusiontreated conventionally. J Neurol Neurosurg Psychiatry. 2005; 76:1238-1241. 11. Coward LJ, McCabe DJ, Ederle J, Featherstone RL, Clifton A, Brown MM: Long-term outcome after angioplasty and stenting for symptomatic vertebral artery stenosis compared with medical treatment in the Carotid And Vertebral Artery Transluminal Angioplasty Study (CAVATAS): a randomized trial. Stroke. 2007; 38:1526-1530. 12. Compter A, van der Worp HB, Schonewille WJ, Vos JA, Algra A, Lo TH, Mali WPThM, Moll FL and Kappelle LJ. VAST: Vertebral Artery Stenting Trial. Protocol for a randomized safety and feasibility trial. Trials 2008; 9: 65. 13. Clifton A, Markus H, Kuker W, Rothwell P.E-050. The Rationale for the Vertebral artery Ischaemia Stenting trial (VIST): NeuroIntervent Surg 2013; 5. Suppl 2 A56. 14. Compter A et al. VAST investigators. Stenting versus medical treatment in patients with symptomatic vertebral artery stenosis: a randomised open-label phase 2 trial. Lancet Neurol. 2015 Jun; 14(6): 606-614. 15. VIST (Vertebral artery Ischaemia Stenting Trial) ISRCT N 95212240. 16. Markus HS, Harshfield EL, Compter A. et al. Stenting for symptomatic vertebral artery stenosis: a preplanned pooled individual patient data analysis. Lancet Neurol. 2019 Jul; 18(7): 666-673. https://doi.org/10.1016/S1474-4422(19)30149-8 17. Markus HS, Larsson SC, Dennis J et al. Vertebral artery stenting to prevent recurrent stroke in symptomatic vertebral artery stenosis: the VIST RCT. Health Technol Assess. 2019 Aug; 23(41): 1-30.
Abstract Background: ongoing abdominal and pelvic bleeding is one of main causes of deaths among patients with penetrating and blunt trauma. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a method for temporary patient's stabilization and reducing blood loss. Aim: was to present result of work of 1st-level trauma-center: to describe experience of application of methodics of REBOA in center, to estimate its efficacy on the base of retrospective analysis of hospital charts of injured and heavy damaged patients. Materials and methods: during the period between April 2013 and November 2017, 14 REBOA procedures to patients with abdominal (thoracic aorta occlusion) and pelvic (occlusion of the aortic bifurcation) bleeding were performed at the War Surgery Department of the «KirovMilitaryMedicalAcademy». A decision to do REBOA was made upon admission according to significant hypotension (systolic blood pressure [sBP] less than 70 mm Hg.) or cardiac arrest, abdominal free fluid and/or mechanically unstable pelvic fractures. Results: mean time from admission to REBOA was 27,5 [10,0-52,5] minutes. The procedure took 10 [5-13] minutes. Average BP elevation after balloon inflation was 43±16 mm Hg. Survival in acute phase of trauma (first 12 hours) was 57.1%, while total survival rate was only 14.3% (2/14 patients). One REBOA-associated major complication was registered - development of irreversible ischemia due to long sheath dwell time in the femoral artery. Conclusion: REBOA is effective for temporary hemodynamic stabilization and internal hemorrhage control, it allows increasing early survival in severe trauma. Factors to improve short- and long-term outcome, total survival warrant to be additionally investigated, especially in terms of intensive care improvement. References 1. Stannard A., Eliason J.L., Rasmussen T.E. Resuscitative endovascular balloon occlusion of the aorta (REBOA) as an adjunct for hemorrhagic shock. J. Trauma. 2011; 71(6): 1869-1872. 2. Barnard E.B.G., Morrison J.J., Madureira R.M. et al. Resuscitative endovascular balloon occlusion of the aorta (REBOA): a population based gap analysis of trauma patients in England and Wales. Emerg. Med. J. 2015; 32 (12): 926-932. 3. Brenner M.L., Moore L.J., DuBose J.J. et al. A clinical series of resuscitative endovascular balloon occlusion of the aorta for hemorrhage control and resuscitation. J. Trauma Acute Care Surg. 2013; 75 (3): 506-511. 4. Moore L.J., Brenner M., Kozar R.A. et al. Implementation of resuscitative endovascular balloon occlusion of the aorta as an alternative to resuscitative thoracotomy for resuscitative balloon occlusion of the aorta (REBOA). J. Trauma Acute Care Surg. 2016; 81 (3): 409-419. 5. Zavrazhnov A.A. Damage of large vessels of the abdomen: ways to improve diagnosis and treatment: Diss. kand. med. Nauk. St.Petersburg. 1996; 201 [In Russ]. 6. Sadeghi M., Nilsson K.F., Larzon T. et al. The use of aortic balloon occlusion in traumatic shock: first report from the ABO trauma registry. Eur. J. Trauma Emerg. Surg. 2018; 44 (4): 491-501. 7. Hughes C.W. Use of an intra-aortic balloon catheter tamponade for controlling intra-abdominal hemorrhage in man. Surgery. 1954; 36 (1): 65-68. 8. DuBose J.J., Scalea T.M., Brenner M. et al. The AAST prospective Aortic Occlusion for Resuscitation in Trauma and Acute Care Surgery (AORTA) registry: Data on contemporary utilization and outcomes of aortic occlusion and resuscitative balloon occlusion of the aorta (REBOA). J. Trauma Acute Care Surg. 2016; 81 (3): 409-419. 9. Martinelli T., Thoni F., Declety P. et al. Intra-aortic balloon occlusion to salvage patients with life-threatening hemorrhagic shocks from pelvic fractures. J. Trauma. 2010; 68 (4): 942-948. 10. Brenner M., Hoehn M., Pasley J. et al. Basic endovascular skills for trauma course: bridging the gap between endovascular techniques and the acute care surgeon. J. Trauma Acute Care Surg. 2014; 77 (2): 286-291. 11. DuBose J., Fabian T., Bee T. et al. Contemporary utilization of resuscitative thoracotomy: results from the AAST aortic occlusion for resuscitation in trauma and acute care surgery (AORTA) multicenter registry. Shock. 2018; 50 (4): 414-420. 12. Gumanenko E.K. An objective assessment of the severity of injuries. Voenno-medicinskij zhurnal. 1996; 317 (10): 25-34 [In Russ]. 13. Samokhvalov I.M., Reva V.A., Pronchenko A.A., Agliulin V.F. Comparison of the effectiveness of emergency thoracotomy in wounded and injured. Zdorov'e. Medicinskaja jekologija. Nauka. 2012; 1-2 (47-48): 43 [In Russ]. 14. White J.M., Cannon J.W., Stannard A. et al. Endovascular balloon occlusion of the aorta is superior to resuscitative thoracotomy with aortic clamping in a porcine model of hemorrhagic shock. Surgery. 2011; 150 (3): 400-409. 15. Ogura T., Lefor A.T., Nakano M. et al. Nonoperative management of hemodynamically unstable abdominal trauma patients with angioembolization and resuscitative endovascular balloon occlusion of the aorta. J. Trauma Acute Care Surg. 2015; 78 (1): 132-135
Abstract: Open surgery is a basis of treatment of major vascular injuries, although some of injuries can be treated by means of endovascular surgery Aim: was to investigate the possibility of endovascular treatment of full transection of major arteries. Material and methods: а retrospective analysis of patients histories of 52 patients with limbs' vascular injuries was performed. Opinions of physicians of different surgical specialties about practicability of endovascular technologies use in trauma surgery were investigated. Using a created stand-desk, consisted with container filled with gelatin mass, simulating a hematoma in a zone of vascular rupture, plunged into gelatin ends of silicone tubes 6 mm in internal diameter, and a web-camera fixed above the stand, comparative analysis of efficacy of 6 different methods of vessel recanalization was done. Results: еndovascular methods of treatment can be performed in 42,3% of patients with major arterial injuries. Of those, 13,5% of patients may need to undergo recanalization of full vascular transection followed by stent-graft implantation. Our study demonstrated the possibility of through-and-through recanalization of the full major vascular transection, and most effective methods of recanalization - methods with use of a special endovascular loop, a retrieval device, and a standard folded guidewire. Preliminary balloon inflation inside a proximal part of the artery should be considered in case of unstable hemodynamics of a patient. The questionnaire showed that integration of endovascular surgical methods is perspective for the future of trauma surgery; however, there are some retaining obstacles such as organizational and fiscal issues. It is likely that training of general surgeons in basic endovascular skills is practical. References 1. Soroka V.V. Neotlozhnye serdechno-sosudistye operatsii v praktike obshhego khirurga [Emergency cardiovascular operations in practice of a general surgeon]. Volgograd: Izd-vo VolGU. 2001; 204 [In Russ]. 2. Samokhvalov I.M. Boevye povrezhdeniya magistral'nykh sosudov: diagnostika i lechenie na etapakh meditsinskoj evakuatsii. Diss. doct. med. nauk [Wartime major vascular injuries: diagnosis and treatment on echelons of care. Doct. med. sci. diss.]. St.Petersburg. 1994; 389 [In Russ]. 3. White J.M., Stannard A., Burkhardt G.E. et al. The epidemiology of vascular injury in the wars in Iraq and Afghanistan. Ann. Surg. 2011; 263(6):1184-1189. 4. Eastridge B.J., Mabry R.L., Seguin P et al. Death on the battlefield (2001-2011): Implications for the future of combat casualty care. J. Trauma Acute Care Surg. 2012; 73(6):431-437. 5. Holcomb J.B., Fox E.E., Scalea T.M. et al. Current opinion on catheter-based hemorrhage control in trauma patients. J. Trauma Acute Care Surg. 2013; 76(3): 888-893. 6. Lumsden A.B. Commentary on «Endovascular management of vascular trauma». Perspect. Vasc. Surg. Endovasc. Ther. 2006; 18(2):130-131. 7. Rasmussen T.E., Woodson J., Rich N.M. et al. Vascular trauma at a crossroads. J. Trauma. 2011; 70(5): 1291-1293. 8. Reva V.A., Samokhvalov I.M. Endovaskulyarnaya khirurgiya na vojne. [Endovascular surgery in the war]. Angiologiya i sosudistaya khirurgiya. 2015; 21(2):166-175 [In Russ]. 9. Reva V.A., Semenov E.A., Petrov A.N. et al. Endovaskulyarnaya ballonnaya okklyuziya aorty: primenenie na statsionarnom i dogospital'nom ehtapakh skoroj meditsinskoj pomoshhi. [Endovascular balloon occlusion of the aorta: the use at in-hospital and pre-hospital stages of emergency medical care]. Skoraya meditsinskayapomoshh,'. 2016; 3:30-38. 10. Reva V.A., Kiselev M.A., Platonov S.A. et al. Selektivnaja embolizacija vetvej glubokoj arterii bedra pri koloto-rezanom ranenii. [Selective angioembolization of the branches of the deep femoral artery in its stab injury]. Vestn. chir. irn. Grekova. 2015; 174(3):67-69 [In Russ]. 11. Bocharov S.M. Angiograficheskaya diagnostika i endovaskulyarnoe lechenie pri travme arterij. Diss. kand. med. nauk [Angiographic diagnosis and endovascular treatment in arterial trauma. Cand. med. sci. diss.]. Moscow. 2008: 103 [In Russ]. 12. Chernaya N.R., Muslimov R.Sh., Selina I.E. et al. Endovaskulyarnoe i khirurgicheskoe lechenie bol'nogo s travmaticheskim razryvom aorty i pechenochnoj arterii. [Endovascular and surgical treatment of a patient with traumatic rupture of the aorta and the hepatic artery]. Angiologiya i sosudistaya khirurgiya. 2016; 22(1):176-181 [In Russ]. 13. Reva V.A., Petrov A.N., Samokhvalov I.M. Stentirovanie poverhnostnoj bedrennoj arterii pri ee bokovom povrezhdenii. [Stenting of superficial femoral artery in correction of its side damage]. Diagn. Intern Radiol. 2014; 8(3):105-108 [In Russ]. 14. Villamaria C.Y, Eliason J.L., Napolitano L.M. et al. Endovascular Skills for Trauma and Resuscitative Surgery (ESTARS) course: curriculum development, content validation, and program assessment. J. Trauma Acute Care Surg. 2014; 76(4):929-935. 15. Brenner M., Hoehn M., Pasley J. et al. Basic endovascular skills for trauma course: bridging the gap between endovascular techniques and the acute care surgeon. J. Trauma Acute Care Surg. 2014; 77(2):286-291. 16. Reva V.A. Obuchajushhie kursy po hirurgii povrezhdenij i endovaskuljarnoj hirurgii pri travmah v Jerebru (Shvecija). [Educational course on trauma surgery and endovascular surgery for trauma in Orebro (Sweden)] . Voen.-med. Jowrn. 2015; 336(12):78-81 [In Russ]. 17. Tsurukiri J., Ohta S., Mishima S. et al. Availability of on-site acute vascular interventional radiology techniques performed by trained acute care specialists: A single-emergency center experience. J. Trauma Acute Care Surg. 2017; 82(1):126-132. 18. Julien M., Emilie L., Dominique M. et al. Evaluation of femoro-popliteal angioplasties with the need for retrograde approach in a twin center series of 26 consecutive cases. J. Vasc. Endovasc. Surg. 2016; 1(4):1-10. 19. Rohlffs F., Larena-Avellaneda A.A., Petersen J.P et al. Through-and-through wire technique for endovascular damage control in traumatic proximal axillary artery transection. Vascular. 2015; 23 (1): 99-101. 20. Shalhub S., Starnes B.W., Tran N.T. Endovascular treatment of axillosubclavian arterial transection in patients with blunt traumatic injury. J. Vasc. Surg. 2011; 53(4): 1141-1144. 21. Gilani R., Tsai PI., Wall M.J. Jr., Mattox K.L. Overcoming challenges of endovascular treatment of complex subclavian and axillary artery injuries in hypotensive patients. J. Trauma Acute Care Surg. 2012; 73(3): 771-773.
Abstract: Aim: was to show possibilities of endovascular methods of treatment in patients with acute ischemic stroke in endovascular operation-room of cardiovascular surgical department. Materials and methods: we present two case reports of treatment of patients with acute ischemic stroke, who were admitted to neurological department during first hours from onset. Patients underwent CT perfusion, CT angiography of cerebral arteries. For blood-flow restoration, patients underwent thrombectomy Results: thrombectomy from occluded artery was successful in both cases, that leaded to better recovery of neurological status. Conclusions: wide application of endovascular techniques for restoration of cerebral blood flow in patients with ischemic stroke in the early hours of the onset of the disease, can lead to a more prosperous clinical outcomes, more rapid and complete recovery of the patient. Important is the presence of specialized personnel with appropriate skills and a wide spectrum of endovascular instruments. References 1. Feigin V.L., Lawes C.M.M., Bennet D.A., Anderson C.A. (Stroke epidemiology: a review of population-based studies of incidence, prevalence, and casefatality in the late 20th century. Lancet Neurol. 2003;2:43-53. 2. Stulin I.D., Musin R.S., Belousov Ju.B. Insul't s tochki zrenija dokazatel'noj mediciny. [Stroke from viewpoint of evidence-based medicine]. Kachestvennaja klinicheskaja praktika. 2003; 4: 10-18 [In Russ]. 3. Varakin Ju.A. Jepidemiologicheskie aspekty profilaktiki narushenij mozgovogo krovoobrashhenija. [Epidemiological aspects of the stroke prevention]. Nervnye bolezni. 2005; 2: 4-9 [In Russ]. 4. Hripun A.V., Malevannyj M.V. i soavt. Pervyj opyt oblastnogo sosudistogo centra ROKB po jendovaskuljarnomu lecheniju ostorogo narushenija mozgovogo krovoobrashhenija po ishemicheskomu tipu [First Experience of Regional Vascular Center ROKB in Endovascular Treatment of ischemic stroke]. Mezhdunarodnyj zhurnal intentencionnoj kardiologii. 2010; 23: 32-42 [In Russ]. 5. Gusev E.I., Skvorcova V.I., Martynov M.Ju. Vedenie bol'nyh v ostrom periode mozgovogo insul'ta [The treatment of the acute phase of the stroke]. Vrach. 2003; 3: 8-24 [In Russ]. 6. Nakano S., Iseda T., Yoneyama T., et. Al. Direct percutaneous transluminal angioplasty for acute middle cerebral artery trunk occlusion: an alternative option to intra-arterial thrombollysis. Stroke. 2002; 33: 2872-2876. 7. White J., Cates Ch., Cowley M. et. al. Interventional stroke therapy: current state of the art and needs assessment. Catheterization and Cardiovascular Intervention. 2007; DOI 10.1002/ccd: 1-7. 8. Suzuki S., et al. Access to intra-arterial therapies for acute ischemic stroke: an analysis of the US population. AJNR Am. J. Neuroradiol. 2004; 25: 1802-1806. 9. Wholey M.H, et.al. Global experience in cervical carotid artery stent placement. Catheter Cardiovasc. Interv. 2000; 50: 160-167
Abstract: A case report of successful treatment of a penetrating stab injury of the superficial femoral artery ir the adductor canal using uncovered stent. While stenting is usually used in major arteries for an intimal defeat and/or dissection due to blunt trauma, sometimes this type of penetrating injury pattern allows performing uncovered stent implantation. In this case report, it was a small side injury of vessel with the impression of the arterial wall inside the lumen resulting less than 50% stenosis and the absence of active extravasation during angiography Prior to stenting, balloon angioplasty was not effective to affect the intimal tear completely Good final angiographic and functional outcome with fast complete recovery let us draw a conclusion of the possibility of usage of uncovered stents Г certain cases with specific penetrating injury pattern. Refernces 1. Compton C., Rhee R. Peripheral vascular trauma. Perspect. Vasc. Surg. Endovasc. Ther. 2005; 17 (4): 297-307. 2. Rasmussen T.E., Clouse W.D., Peck M.A. et al. Development and implementation of endovascular capabilities in wartime. J. Trauma. 2008; 64 (5): 1169-1176. 3. Teixeira P.G., Inaba K., Hadjizacharia P. et al. Preventable or potentially preventable mortality at a mature trauma center. J. Trauma. 2007; 63 (6): 1338-1347. 4. Bocharov S.M. Angiograficheskaja diagnostika i jendovaskuljarnoe lechenie pri travme arterij. Diss. kand. med. nauk [Angiographic diagnosis and endovascular treatment in arterial trauma. Cand. med. sci. diss.]. Moscow. 2008: 103 [In Russ]. 5. Sin'kov M.A., Murashkovski A.L., Pogorelov E.A. et al. Endovaskulyarnoe zakrytie jatrogennogo arteriovenoznogo soust'ja podvzdoshnoj arterii i veny. [Endovascular closure of iatrogenic arteriovenous anastomosis of the iliac artery and vein]. Angiologiya i sosudistaya khirurgiya. 2014; 20 (1): 80-84. [In Russ]. 6. Chernyavskiy A.M., Osiev A.G., Grankin D.S. et al. Endovaskulyarniy metod lecheniya anevrizmy podkluchichnoi arterii s pomoschiu stent-graphta. [Endovascular method of treatment of subclavian artery aneurysm with stent-graft implantation]. Angiologiya i sosudistaya khirurgiya. 2003; 3: 122-123. [In Russ]. 7. Cynamon J., Lautin J.L., Wahl S.I. Covered stents for vascular injuries. Emerg. Radiol. 1999; 6: 244-248. 8. Nicholson A.A. Vascular radiology in trauma. Cardiovasc. Intervent. Radiol. 2004; 27 (2): 105-120. 9. Assali A.R., Sdringola S., Moustapha A. et al. Endovascular repair of traumatic pseudoaneurysm by uncovered self-expandable stenting with or without transstent coiling of the aneurysm cavity. Catheter. Cardiovasc. Interv. 2001; 53 (2): 253-258. 10. Fox N., Rajani R.R., Bokhari F. et al. Evaluation and management of penetrating lower extremity arterial trauma: an Eastern Association for the Surgery of Trauma practice management guideline. J. Trauma Acute Care Surg. 2012; 73 (5, Suppl. 4): S315-S320. 11. Sofue K., Sugimoto K., Mori T. et al. Endovascular uncovered Wallstent placement for life-threatening isolated iliac vein injury caused by blunt pelvic trauma. Jpn. J. Radiol. 2012; 30 (8): 680-683.
Abstract: Aim: was to estimate the importance of restoring blood flow in vertebral arteries in the segment V1 by stenting in patients with multivessel lesions of extracranial arteries and vertebrobasilar insufficiency (VBI). Material and methods: study include 59 patients with a dominant, long-existing clinic of vertebrobasilar insufficiency, with multivessel lesions of brachiocephalic arteries, lower brain tolerance to ischemia, with the presence of stenosis of segment V1 of vertebral artery more than 70%, which is regarded by neurologists, as the main reason for VBI. All patients should have been undergone carotid revascularization. However, due to multivessel lesions and low perfusion reserve, all patients as the first stage of treatment - underwent stenting of V1 segment of vertebral artery. In 38 patients bare-metal stent were used, in 14 - drug-eluting stents, in 7 - renal stents. Distal protection was used in 12 patients. In remaining patients - stenting was performed without protection. Results: in immediate postoperative period, technical, angiographic success and clinical improvement were noticed in 100% of patients. All 59 patients underwent the second and subsequent stages of cerebral revascularization without ischemic episodes. The duration of follow-up was from 6 months to 6 years. After 3 months, 55(93,2%) patients sustained clinical improvement, with no restenosis in stents. 4 patients (6,8%) had no clinical improvement: in one patient after 3 months developed ischemic stroke (IS) in vertebrobasilar system(VBS), due to the occlusion of the stent. 1 patients had stent restenosis with the increase of clinical manifestations of VBI, which required additional stenting. After 14 months, 1 patient after stenting had IS in VBS due to stent fractures caused by bone compression. Conclusion: stenting of V1 segment of vertebral artery in patients with multivessel lesions of brachiocephalic arteries and clinic of VBI, can be considered as the first stage of cerebral revascularization in case of significant stenosis segment V1 vertebral artery and low tolerance to cerebral ischemia. References 1. Savitz S.I., Caplan L.R. Vertebrobasilar disease. N Engl J Med. 2005, 352: 2618-2626. 2. Caplan L.R., Wityk R.J., Glass T.A., Tapia J., Pazdera L., Chang H.M., Teal P, Dashe J.F., Chaves C.J., Breen J.C., Vemmos K., Amarenco P, Tettenborn B., Leary M., Estol C., Dewitt L.D., Pessin M.S. New England Medical Center Posterior Circulation registry. Ann Neurol. 2004, 56: 389-398. 3. Vereshhagin N.V. Patologija vertebral'no-baziljarnoj sistemy i narushenija mozgovogo krovoobrashhenija[Pathology of vertebrobasilar system and cerebral blood flow disorders]. M. 1980; S 28 [In Russ]. 4. Puzin M.N., Zinov'eva G.A., Metelkina L.P. Aspekty medikamentoznogo lechenija bol'nyh s vertebral'no-baziljarnoj nedostatochnost'ju [Aspects of pharmacotherapy in treatment of patients with vertebrobasilar insufficiency]. Klinicheskaja farmakologija i terapija. 2006; 2: 23-26 [In Russ]. 5. Berguer R., Morasch M., Kline R. A review of 100 consecutive reconstructions of the distal vertebraf artery for embolic and hemodynamic disease. J Vasc Surg. 1998, 27 (5): 852-859. 6. Pokrovskiy A.V., Beloyartsev D.F., Otdalemmie rezultati operatsiy podkluchichno-sonnoi transpozitsii. [Longterm results of operations of the subclavian-carotid transposition.] Angiologia I sosudistaya khirurgia. 2002; 8(2): 84-91. 7. He Y, Bai W., Li T. et al. Perioperative complications of recanalization and stenting for symptomatic nonacute vertebrobasilar arteryocclusion. Ann Vasc Surg. 2014 Feb; 28 (2): 386-393. 8. European Stroke Organisation et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2011 Nov; 32 (22): 2851-906. 9. Natsionalnie rekomendacii po vedeniyu patsientov s zabolevaniyami brakhiotsefal’nikh arteriy. [National guidelines on the management of patients with diseases of brachiocephalic arteries.] Angiologia I sosudistaya khirurgia. 2013; 19 (2): attachment 70. 10. Schonewille W.J., Algra A., Serena J., Molina C.A., Kappelle L.J. Outcome in patients with basilar artery occlusion treated conventionally. J Neurol Neurosurg Psychiatry. 2005, 76:1238-1241. 11. Coward L.J., McCabe D.J., Ederle J., Featherstone R.L., Clifton A., Brown M.M. Long-term outcome after angioplasty and stenting for symptomatic vertebral artery stenosis compared with medical treatment in the Carotid And Vertebral Artery Transluminal Angioplasty Study (CAVATAS): a randomized trial. Stroke. 2007, 38: 1526-1530. 12. Compter A., van der Worp H.B., Schonewille W.J., Vos J.A., Algra .A., Lo T.H., Mali WPThM, Moll FL. and Kappelle L.J. VAST: Vertebral Artery Stenting Trial. Protocol for a randomised safety and feasibility trial. Trials 2008, 9: 65. 13. Clifton A., Markus H., Kuker W., Rothwell P. E-050. The Rationale for the Vertebral artery Ischaemia Stenting trial (VIST): NeuroIntervent Surg 2013; 5. Suppl 2 A56. 14. Compter A., et al. VAST investigators. Stenting versus medical treatment in patients with symptomatic vertebral artery stenosis: a randomised open-label phase 2 trial. Lancet Neurol. 2015 Jun; 14(6): 606-614. 15. VIST (Vertebral artery Ischaemia Stenting Trial) ISRCT N 95212240.