Website is intended for physicians
Search:

 

Abstract:

Introduction: improving the technique of radiofrequency denervation of renal arteries seems to be extremely important for optimizing the effectiveness of lowering blood pressure in patients with resistant arterial hypertension. Our study presents an assessment of the comparison of long-term results of renal artery denervation (RAD) using various techniques and instruments.

Aim: was to compare the use of various techniques for renal artery denervation and to evaluate longterm results in patients with resistant arterial hypertension using various radio frequency catheters.

Materials and methods: in a prospective study, three groups of patients (n = 58) aged 18-85 years with resistant systolic-diastolic arterial hypertension of 1-2 stages were studied: patients underwent denervation of renal arteries by various methods, against background of standardized antihypertensive therapy. In group I (n = 21), denervation was performed only in the proximal segment of the renal artery (before the first bifurcation). In group II (n = 19), ablation was performed both in proximal segment and in branches of the second and third order, as well as in the accessory renal arteries with a diameter of more than 3 mm. The third control group included 18 patients who received only standardized drug antihypertensive therapy.

Results: technical success of the operation was achieved in 100% of cases. According to the 24-hours ambulatory blood pressure monitoring (ABPM) data, the decrease in blood pressure (BP) in group I by the second year of observation was 6,7 mm Hg, p <0,05 for systolic BP (SBP) and ˗ 2,7 mm Hg, p> 0,05 for diastolic BP (DBP). In the second group, a greater decrease in mean SBP and DBP was recorded: ˗ 9,2 mm Hg, p <0,05 and ˗ 4,3 mm Hg, p <0,05, respectively. In the control group of drug treatment, the weakest antihypertensive effect of treatment was revealed. The average indicators of SBP and DBP decreased by - 4,9/1,9 mm Hg, p> 0,05.

Conclusion: results of the use of prolonged radiofrequency denervation of the main, segmental and accessory renal arteries with a large number of ablation points demonstrate a similar safety and greater efficacy in treatment of patients with resistant arterial hypertension, in comparison with denervation of only main trunk of renal artery.

  

 

References 

1.     Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014; 129: 49-73.

https://doi.org/10.1161/01.cir.0000437741.48606.98

2.     Group SR, Wright JT Jr, Williamson JD, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015; 373: 2103-2116.

https://doi.org/10.1056/NEJMoa1511939

3.     Chowdhury R, Khan H, Heydon E, et al. Adherence to cardiovascular therapy: a meta-analysis of prevalence and clinical consequences. Eur Heart J. 2013; 34: 2940-2948.

https://doi.org/10.1093/eurheartj/eht295

4.     Fengler K, Ewen S, Hцllriegel R, et al. Blood Pressure Response to Main Renal Artery and Combined Main Renal Artery Plus Branch Renal Denervation in Patients with Resistant Hypertension. J Am Heart Assoc. 2017; 6(8): 006196.

https://doi.org/10.1161/JAHA.117.006196

5.     Reshetnik A, Gohlisch C, Scheurig-Münkler C, et al. Predictors for success in renal denervation-a single centre retrospective analysis. Sci Rep. 2018; 8(1): 15505.

https://doi.org/10.1038/s41598-018-33783-3

6.     Wang A. 2019 Consensus Statement of the Taiwan Hypertension Society and the Taiwan Society of Cardiology on Renal Denervation for the Management of Arterial Hypertension. Acta Cardiologica Sinica. 2019; 35(3): 199-230.

https://doi.org/10.6515/ACS.201905_35(3).20190415A

7.     Steigerwald K, Titova A, Malle C, et al. Morphological assessment of renal arteries after radiofrequency catheter-based sympathetic denervation in a porcine model J Hypertens. 2012; 30(11).

https://doi.org/10.1097/HJH.0b013e32835821e5

8.     Пекарский С.Е., Баев А.Е., Фальковская А.Ю. и др. Анатомически оптимизированная дистальная ренальная денервация — стойкий гипотензивный эффект в течение 3 лет после вмешательства. Патология кровообращения и кардиохирургия. 2020; 24(3S): 98-107.

Pekarskij SE, Baev AE, Fal'kovskaya AYU, et al. Anatomically optimized distal renal denervation – permanent hypotensive effect for 3 years after intervention. Patologiya krovoobrashcheniya i kardiohirurgiya, 2020; 24(3S): 98-107 [In Russ].

http://dx.doi.org/10.21688/1681-3472-2020-3S-98-107

9.     Mahfoud F, Tunev S, Ewen S,et al. Impact of Lesion Placement on Efficacy and Safety of Catheter-Based Radiofrequency Renal Denervation. Journal of the American College of Cardiology. 2015; 66: 1766-1775.

https://doi.org/10.1016/j.jacc.2015.08.018

10.   Bertog S, Fischel T, Vega F, et al. Randomised, blinded and controlled comparative study of chemical and radiofrequency-based renal denervation in a porcine model. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. 2017; 12: 1898-1906.

https://doi.org/10.4244/EIJ-D-16-00206

11.   Mahfoud F, Pipenhagen C, Moon L, et al. Comparison of branch and distally focused main renal artery denervation using two different radio-frequency systems in a porcine model. International journal of cardiology. 2017; 241: 373-378.

https://doi.org/10.1016/j.ijcard.2017.04.057

12.   Vink E, Goldschmeding R, Vink A, et al. Limited destruction of renal nerves after catheter-based renal denervation: results of a human case study. Nephrology, dialysis, transplantation - European Renal Association. 2014; 29: 1608-1610.

https://doi.org/10.1093/ndt/gfu192

13.   Агаева Р.А., Данилов Н.М., Щелкова Г.В. и др. Радиочастотная денервация почечных артерий моно-электродным и мультиэлектродным устройствами у пациентов с неконтролируемой артериальной гипертонией: результаты 6-месячного наблюдения. Системные гипертензии. 2020; 17(1): 46-50.

Agaeva RA, Danilov NM, Shchcelkova GV, et al. Radiofrequency renal denervation with mono-electrode and multielectrode device for treatment in patient with uncontrolled hypertension: results of a 6-month follow-up. Sistemnye gipertenzii. 2020; 17(1): 46-50 [In Russ].

https://doi.org/10.26442/2075082X.2020.1.200077

14.   Mahfoud F, Tunev S, Ewen S, et al. Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J Am Coll Cardiol. 2015; 66: 1766-1775.

https://doi.org/10.1016/j.jacc.2015.08.018

15.   Henegar JR, Zhang Y, Hata C, et al. Catheter-based radiofrequency renal denervation: location effects on renal norepinephrine. Am J Hypertens. 2015; 28: 909-914.

https://doi.org/10.1093/ajh/hpu258

16.   Konstantinos PT, Lida F, Kyriakos D. Safety and performance of diagnostic electrical mapping of renal nerves in hypertensive patients. EuroIntervention. 2018; 14: 1334-1342.

https://doi.org/10.4244/EIJ-D-18-00536

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы