Website is intended for physicians
Search:
Всего найдено: 4

 

Abstract:

Introduction: the main methods for diagnosing cardiac neoplasms, allowing to determine the localization, size, involvement of heart structures, to suggest the nature of the pathological process and to plan treatment tactics, are: echocardiography (EchoCG), contrast multispiral computed coronary angiography (MSCT CAG), magnetic resonance imaging (MRI) and positron emission computed tomography (PET CT). At the same time, any additional information about the pathological process can improve the quality of diagnosis and treatment. So, for example, selective coronary angiography (CAG), which in this case can be performed to clarify the coronary anatomy and exclude concomitant coronary atherosclerosis, in hands of attentive and experienced specialist of endovascular diagnostic and treatment methods can make a significant contribution to understanding the nature of blood supply of heart neoplasm, thereby bringing closer the formulation of the correct diagnosis and, ultimately, improving results of surgical treatment.

Aim: was to study the nature of blood supply of heart myxoma based on results of a detailed analysis of data of selective coronary angiography in patients with this pathology.

Material and methods: since 2005, 20 patients underwent surgery to remove heart myxoma. The average age of patients was 56,6 + 8,0 (43-74) years. According to data of ultrasound examination, sizes of myxomas ranged from 10 to 46 mm in width and from 15 to 71 mm in length (average size ? 25,6 ? 39,1 mm). In 2/3 of all cases (15 out of 20,75%), the fibrous part of the inter-atrial septum (fossa oval region) was the base of myxomas. In 8 of 20 (40%) cases, tumor prolapse into the left ventricle through structures of the mitral valve was noted in varying degrees. In order to exclude coronary pathology, CAG was performed in 14 cases, in the rest - MSCT CAG.

Results: of 14 patients with myxoma who underwent selective coronary angiography, 12 (85,7%) patients had distinct angiographic signs of vascularization. In all 12 cases, the sinus branch participated in the blood supply of myxoma, begins from the right coronary artery (RCA) in 10 cases: in 7 case it begins from proximal segment of the RCA and, in 3 cases, from the posterior-lateral branch (PLB) of the RCA. In one case, the source of blood supply of neoplasm was the sinus branch extending from PLB of dominant (left type) circumflex artery of the left coronary artery (PLB CxA LCA). In one case, the blood supply to the neoplasm involved branches both from the RCA and CxA, mainly from the left atrial branch of CxA. Moreover, in all 12 cases, sinus branch formed two branches: branch of sinus node itself and left atrial branch. It was the left atrial branch that was the source of blood supply of myxoma. Analysis of angiograms in patients with myxoma of LA showed that left atrial branch in terminal section formed a pathological vascularization in the LA projection, accumulating contrast-agent in the capillary phase (MBG 3-4). In addition to newly formed vascularization, lacunae of irregular shape were distinguished, the size of which varied from 2 to 8 mm along the long axis. In 8 cases, hypervascular areas with areas of lacunar accumulation of contrast-agent showed signs of paradoxical mobility and accelerated onset of venous phase. In two cases, there were distinct angiographic signs of arteriovenous shunt. In 2 cases (when the size of the myxoma did not exceed 15-20 mm according to EchoCG and CT), angiographic signs allowing to determine the presence of LA myxoma were not so convincing: there was no lacunar accumulation of contrast-agent; small (up to 10 mm) hypervascular areas were noticed, the capillary network of which stood out against the general background of uniform contrasting impregnation and corresponded to MBG grade 1-2.

Conclusion: according to our data, angiographic signs of vascularization of myxomas are detected in most cases with this pathology (85,7%). The source of blood supply, in the overwhelming majority of cases, is branch of coronary artery, which normally supplies the structure of the heart, on which the basement of the pathological neoplasm is located. The aforementioned angiographic signs characteristic of myxomas deserve the attention of specialists in the field of endovascular diagnosis and treatment and should be described in details in protocols of invasive coronary angiography.

 

References

1.     Петровский Б.В., Константинов Б.А., Нечаенко М.А. Первичные опухоли сердца. М.: Медицина, 1997; 152.

Petrovskiy BV, Konstantinov BA, Nechaenko MA. Primary heart tumors. M.: Medicina, 1997 [In Russ].

2.     Balci AY, Sargin M, Akansel S, et al. The importance of mass diameter in decision-making for preoperative coronary angiography in myxoma patients. Interact Cardiovasc Thorac Surg. 2019; 28(1): 52-57.

https://doi.org/10.1093/icvts/ivy217

3.     Omar HR. The value of coronary angiography in the work-up of atrial myxomas. Herz. 2015; 40(3): 442-446.

4.     Gupta PN, Sagar N, Ramachandran R, Rajeshekharan VR. How does knowledge of the blood supply to an intracardiac tumour help? BMJ Case Rep. 2019; 12(2): 225900.

https://doi.org/10.1136/bcr-2018-225900

5.     Marshall WHJr., Steiner RM, Wexler L. Tumor vascularity in left atrial myxoma demonstrated by selective coronary arteriography. Radiology. 1969; 93(4): 815-816.

6.     Lee SY, Lee SH, Jung SM, et al. Value of Coronary Angiography in the Cardiac Myxoma. Clin Anat. 2020; 33(6): 833-838.

https://doi.org/10.1002/ca.23527

 

Abstract:

Aim: was to estimate the diagnostic performance of inferior petrosal sinus blood sampling with Desmopressin stimulation in patients with ACTH-dependent Cushing's syndrome.

Materials and Methods: all enrolled patients had clinically evident and biochemically proven ACTH-dependent Cushing's syndrome. The inclusion criteria was as follows: the absence of pituitary adenoma on MRI, pituitary adenoma less than 6 mm and/or negative high dose (8mg) dexamethasone suppression test or unsuccessful neurosurgery when the histological material was not informative. A petrosal sinus to peripheral ACTH gradient of at least 2,0 at baseline or at least 3 after Desmopressin administration suggested a pituitary source of ACTH. Plasma ACTH was measured by automated electrochemiluminescence immunoassay (F. Hoffmann-La Roche Ltd (Cobas e601).

Results: 117 patients were included in the present study (86 females (73,5%) and 31 (26,5%) males with a median age of 34 years (Q25-Q75 26-49 years). The youngest patient was 17 years old and the oldest 66 years old. The median of 24h urinary free cortisol was 2148 (1268-4129) nmol/24 hours; the morning plasma ACTH level -105,8 (67,7-150,8) ng/ml; late-night ACTH - 83,6 (51,8-126,2) ng/ml. A final histological diagnosis was available only in 110 patients (94 patients with Cushing's disease and 16 cases of ACTH-ectopic Cushing's syndrome). Only the data of patients with histological proven diagnosis was included in the final analysis. The sensitivity of bilateral inferior petrosal sinus blood sampling with Desmopressin stimulation was found to be 90,4% (95% DI 82,8-94,9), and the specificity- 93,7% (95% DI 71,7 - 98,9). The area under the curve (when the ratios before and after Desmopressin administration were analyzed) was 0,940 (95% DI 0, 893-0,988). The median duration of the procedure was 60 minutes and the median X-Ray dose was 4,7 mSv In general, the manipulation was well tolerated.

Conclusion: bilateral inferior petrosal sinus blood sampling with Desmopressin administration demonstrated the high values of sensitivity and specificity.

 

 

 

Abstract:

Aim: was to estimate the diagnostic value of PET with 18F-Choline and 18F-FDG in case of mixed hepatocellular (HCC) and cholangiocellular cancer (CCC).

Materials and methods: PET/CT with 18F-Choline and 18F-FDG was performed on 70 years old patient, with diagnosed hepatobilliary cancer. CT scan and MRI with intravenous contrast-enhanced, histological and immunohistochemical study of postoperative material (right-sided hemihepatectomy) were also performed.

Results: difference in the accumulation of 18F-Choline and 18F-FDG in some areas of mixed hepatocellular and cholangiocellular cancer was detected: in the field of cholangiocellular cancer and ir the field of poorly differentiated hepatocellular cancer.

Conclusions: 18F-choline has a low diagnostic value in the detection of cholangiocellular cancer and poorly differentiated HCC, in contrast to 18F-FDG, whereas at high differentiated HCC study, 18F-choline is more preferable. Diagnostic value of 18F-FDG at high differentiated HCC is extremely low.

 

References

1.     Patjutko Ju.I., Sagajdak I.V., Chuchuev E.S. Gepatocelljuljarnyj rak pecheni [Hepatocellular cancer]. Bjulleten' medicinskih internet-konferencij. 2011;1: 35-61 [In Russ].

2.     Chissov V.I. Onkologija [Oncology]. M.: Gjeotar-Media. 2007; 391-399 [In Russ].

3.     Sukonko O.G. Gepatocelljuljarnyj rak. Algoritm diagnostiki i lechenija zlokachestvennyh novoobrazovanij[Hepatocellular cancer. Algorithm of diagnostics and treatment of malignant neoplasms] M.: Media Sfera. 2012; 127-135 [In Russ] .

4.     Bosh F.X., Ribes J., Borras J. Epidemiology of primary liver cancer. Semin. Liverdis., vol.19. 1999; 271-285.

5.     Beasley R.P., Hwang L.Y Overview on the epidemiology of hepatocellular carcinoma. Viral hepatitis and liver disease. 1991; 532-535.

6.     Huo T.I., Lee S.D., Wu J.C. For hepatocellular carcinoma: look for a perfect classification system. J. Hepatol. 20-4; .40(6): 1041-1042.

7.     Barazani Y, Hiatt J.R., Tong M.J. et al. dironic viral hepatitis and hepatocellular carcinoma. World J. Surg. 2007; 31: 1245-250.

8.     Jeong S., Aviata H., Katamura Y Low-dose intermittent interferon - alpha-therapy for HCV - related liver cirrosis after curative treatment of hepatocellular carcinoma. World J. Gastroenterology. 2007;113; 5188-5195.

9.     Zogot S.R., Akberov R.F. Gepatocelljuljarnyj rak (jepidemiologija, luchevaja diagnostika, sovremennye aspekty lechenija). Lekcii dlja vrachej obshhej praktiki, onkologija, prakticheskaja medicina, hirurgija [Hepatocellular cancer (epidemiology, radiodiagnostics, modern aspects of treatment). Lectures for general practice doctors, oncology, practical medicine, surgery]. 2013; 112-115 [In Russ].

10.   Majstrenko N.A., Shejko S.B., Alent'ev A.V. Holangiocelljuljarnyj rak (osobennosti diagnostiki i lechenija) [Cholangiocellular cancer (features of diagnostics and treatment)]. Prakticheskaja onkologija. 2009; 9(4): 229-236 [In Russ].

11.   Ward J., Robinson P. How to detect hepatocellular carcinoma in cirrhosis. Eur. Radiology. 2002; 2258-2273.

12.   Zhang F., Chen X.-P., Zhang W. et al. Combined hepatocellular cholangiocarcinoma originating from hepatic progenitor cells: immunohistochemical and double-fluorescence immunostaining evidence. Histopathology. 2008; 52: 224-232.

13.   Caturelli E., Pompili M. Hemangioma-like lesions in chronic liver disease: diagnostic evaluation in patients. Radiology. 2001; 337-342.

14.   Matsui O., Kadoya M., Kameyama T. Benign and malignant nodules in cirrhotic livers: distinction based on blood supply. Radiology. 1991; 493-497.

15.   Xu H.X., Liu G.J., Lu M.D. Characterization of focal liver lesions using contrast-enhanced sonography with a low mechanical index mode and a sulfur hexafluoride-filled microbubble contrast agent. J. Clin Ultrasound. 2006; 261-272.

16.   Lencioni R., Piscaglia F. Contrast-enhanced ultrasound in the diagnosis of hepatocellular carcinoma. Journal Of Hepatology. 2008; 48: 848-857.

17.   Prokop M. Spiral and multislice computed tomography of the body. Georg Thieme Verlag. 2003; Р 234-240.

18.   Tiferes D., D’ippolito G. Liver neoplasms: imaging characterization. Radiol. Bras. 2008; 41(2): 119-127.

19.   Medvedeva B.M., Lukjanchenko A.B. Vozmozhnosti MRT v diagnostike gepatocelljuljarnogo raka u pacientov s cirrozom pecheni [Possibilities of MRI in diagnostics of hepatocellular cancer in patients with liver cirrhosis ]. Rejr. 2013; 3(2): 63 [In Russ].

20.   Jeong Y, Yim N., Kang H. Hepatocellular carcinoma in the cirrhotic liver with helical CT and MRI: imaging spectrum and pitfalls of cirrhosis-related nodules. Ajr. 2005; 1024-1032.

21.   Lee M.H., Kim S.H., Park M.J., Park C.K. Gadoxetic acid-enhanced hepatobiliary phase MRI and high-b-value diffusion-weighted imaging to distinguish well-differentiated hepatocellular carcinomas from benign nodules in patients with chronic liver disease. Ajr. 2011; 197: 868-875.

22.   Nasu K., Kuroki Y, Tsukamoto T. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade. Ajr. 2009; 193: 438-444.

23.   Ferucci J. MRI of the liver. Amer. J. Roentgenol. 1985;147: 1103-1116.

24.   Yamamoto Y, Nishiyama Y Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET. The journal of nuclear medicine. 2008; 49(8): 1245-1248.

25.   Hwang K.H., Choi D.-J. Evaluation of patients with hepatocellular carcinomas using [11C]-acetate and [18F]-FDG PET/CT: a preliminary study. Radiation and isotopes. 2009; 67: 1195-1198.

26.   Talbot J., Gutman F. PET/CT in patients with hepatocellular carcinoma using [18F]- fluorocholine: preliminary comparison with [18F]-FDG PET/CT. Eur. J. Nucl. Med. 2006; 33: 1285-1289.

27.   Chang M., Seungmin B. Usefulness of 18F-fluo- rodeoxyglucose positron emission tomography in differential diagnosis and staging of cholangiocarcinomas. Journal of gastroenterology and hepatology. 2008; 23: 759-765.

28.   Kluge R., Schmidt F., Caca K. Positron emission tomography with [18F]fluoro-2-deoxy-d-glucose for diagnosis and staging of bile duct cancer. Hepatology. 2001; 33:1029-1035.

29.   Kuang Y, Salem N. Transport and metabolism of radiolabeled choline in hepatocellular carcinoma. Molecularрharmaceutics. 2010; 6: 2077-2092.

30.   Trojan J., Schroeder O., Raedle J. Fluorine-18FDG positron emission tomography for imaging of hepatocellular carcinoma. Am. J. Gastroenterol. 1999; 94: 3314-3319.

31.   Esschert J.W., Bieze M. Differentiation of hepatocellular adenoma and focal nodular hyperplasia using 18F-fluorocholine PET/CT. Eur. J. Nucl. Med. 2011; 38: 436-440.

32.   Lee J., Paeng J. Prediction of tumor recurrence by 18F-FDG PET in liver transplantation for hepatocellular carcinoma. J. Nucl. Med. 2009; 50: 682-687.

33.   Kuang Y, Salem N. Imaging lipid synthesis in hepatocellular carcinoma with [methyl-11C]-choline: correlation with in vivo metabolic studies. J. Nucl. Med. 2011; 52: 98-106.

34.   Bosman F., Carneiro F., Ruban R. Classification of tumors of the digestive system. 2010; 201-207.

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы