Website is intended for physicians
Search:
Всего найдено: 5

 

Abstract:

Introduction: the review is devoted to clinical results of the use of radiological and endovascular interventionsin intrahepatic cholangiocarcinoma: chemoinfusion, chemo- and radioembolization of the hepatic artery, preoperative embolization of right branch of portal vein.

Aim: was to evaluate and compare the effectiveness of methods of intravascular therapy for intrahepatic cholangiocarcinoma.

Materials and methods: article presents an analysis of 50 scientific literature sources in leading domestic and foreign scientific journals.

Results: it was found that intra-arterial treatment methods have approximately the same clinical efficacy. Chemoinfusion is a technically simple and effective method of treatment, prospects of which are associated with the creation of new chemotherapy drugs and therapeutic regimens. Chemoembolization is most effective for hypervascular cholangiocarcinoma. The question of its use in a neoadjuvant mode requires study, even in resectable cases, it helps to reduce the biological activity of the tumor. Radioembolization (RE) effectively slows down the growth of cholangiocarcinoma and is well tolerated by patients, but long-term results are little bit worse to those of infusion and embolization. The procedure seems to be technically difficult and requires expensive logistics. When solving these problems, ER can become one of the most important methods of treating cholangiocarcinoma, especially when the tumor is resistant to other methods of therapy.

Preoperative portal vein embolization is routinely used in clinical practice. However, operations performed after this procedure account for only 3-6% of all liver resections. The wider application of this technically simple and safe technique seems logical.

Conclusions: in the treatment of cholangiocarcinoma, a combined approach should be used with the use of surgical, X-ray endovascular and other methods of anticancer therapy: this makes it possible to expand possibilities of treating patients and achieve improved long-term results.

 

References

1.     Datta J, Narayan RR, Kemeny NE, D’Angelica MI. Role of hepatic artery infusion chemotherapy in treatment of initially unresectable colorectal liver metastases (review). JAMA Surg. 2019; 154(8): 768-776.

https://doi.org/10.1001/jamasurg.2019.1694

2.     Rutkin IO, Granov DA, Polysalov VN, et al. Combination of cytoreductive surgery and implantation of intra-arterial infusion systems in the treatment of unresectable liver tumors. Voprosy Onkologii. 2007; 53(2): 206-209 [In Russ].

3.     Generalov MI, Balakhnin PV, Tsurkan VA, et al. Diagnosis and treatment of toxic complications of regional chemotherapy through percutaneously implanted systems. Diagnosticheskaja i Intervencionnaya Radiologiya. 2007; 1(3): 46-51 [In Russ].

4.     Imamine R, Shibata T, Shinozuka K, Togashi K. Complications in hepatic arterial infusion chemotherapy: retrospective comparison of catheter tip placement in the right/left hepatic artery vs. the gastroduodenal artery. Surg. Today. 2017; 47(7): 851-858.

5.     Kozlov AV, Tarazov PG, Polikarpov AA, Polysalov VN. Possibility of regional chemotherapy in patients with cancer of the liver and biliary ducts complicated by obstructive jaundice. Rossijskij Onkologicheskij Zhurnal. 2004; 1: 11-15 [In Russ].

6.     Konstantinidis IT, Do RKG, Gultekin GH, et al. Regional chemotherapy for unresectable intrahepatic cholangiocarcinoma: a potentional role for dynamic magnetic resonance imaging as an imaging biomarker and a survival update from two prospective clinical trials. Ann. Surg. Oncol. 2014; 21(8): 2675-2683.

https://doi.org/10.1245/s10434-014-3649-y

7.     Konstantinidis IT, Koerkamp BG, Do RKG, et al. Unresectable intrahepatic cholangiocarcinoma: systemic plus hepatic arterial infusion chemotherapy is associated with longer survival in comparison with systemic chemotherapy alone. Cancer. 2016; 122(5): 758-765.

https://doi.org/10.1002/cncr.29824

8.     Sinn M, Nicolaou A, Gebauer B, et al. Hepatic arterial infusion with oxaliplatin and 5-FU/folinic acid for advanced biliary tract cancer: a phase II study. Dig. Dis. Sci. 2013; 58(8): 2399-2405.

https://doi.org/10.1007/s10620-013-2624-y

9.     Wang X, Hu J, Caj G, et al. Phase II study of hepatic arterial infusion chemotherapy with oxaliplatin and 5-fluorouracil for advanced perihilar cholangiocarcinoma. Radiology. 2017; 283(2): 580-589.

https://doi.org/10.1148/radiol.2016160572

10.   Thiels CA, D’Angelica MI. Hepatic artery infusion pumps (review). J. Surg. Oncol. 2020; 122(1): 70-77.

https://doi.org/10.1002/jso.25913

11.   Savic LJ, Chapiro J, Geschwind J-FH. Intra-arterial embolotherapy for intrahepatic cholangiocarcinoma: update and future prospects (review). Hepatobiliary Surg. Nutr. 2017; 6(1): 7-21.

https://doi.org/10.21037/hbsn.2016.11.02

12.   Lewis AL, Hall B. Toward a better understanding of the mechanism of action for intra-arterial delivery of irinotecan from DC Bead (DEBIRI). Future Oncology. 2019; 15(17): 2053-2068.

https://doi.org/10.2217/fon-2019-0071

13.   Faramazzalian A, Armitage KB, Kapoor B, Kalva SP. Medical management of tumor lysis syndrome, postprocedural pain, and venous thromboembolism following interventional radiology procedures. Semin. Intervent. Radiol. 2015; 32(2): 209-216.

https://doi.org/10.1055/s-0035-1549379

14.   Matsui Y, Figi A, Horikawa M, et al. Arteriopathy after transarterial chemo-lipiodolization for hepatocellular carcinoma. Diagn. Interv. Imag. 2017; 98(12): 827-835.

https://doi.org/10.3748/wjg.v25.i31.4360

15.   Newgard BJ, Getrajdman GI, Erinjeri JP, et al. Incidence and consequence of nontarget embolization following bland hepatic arterial embolization. Cardiovasc. Intervent. Radiol. 2019; 42(8): 1135-1141.

https://doi.org/10.1007/s00270-019-02229-2

16.   Dolgushin BI, Virshke ER, Kosyrev VJ, et al. Transarterial chemoembolization in the treatment of inoperable patients with nodular cholangiocarcinoma. Annaly Khirurgicheskoy Gepatologii. 2015; 20(3): 24-30 [In Russ].

https://doi.org/10.16931/1995-5464.2015324-30

17.   Park S-Y, Kim JH, Yoon H-J, et al. Transarterial chemoembolization versus supportive therapy in the palliative treatment of unresectable intrahepatic cholangiocarcinoma. Clin. Radiol. 2011; 66(4): 322-328.

https://doi.org/10.1016/j.crad.2010.11.002

18.   Gusani NJ, Balaa FK, Steel JL, et al. Treatment of unresectable cholangiocarcinoma with gemcitabine-based transcatheter arterial chemoembolization (TACE): a single-institution experience. J. Gastrointest. Surg. 2008; 12(1): 129-137.

https://doi.org/10.1007/s11605-007-0312-y

19.   Burger I, Hong K, Schulik R, et al. Transcatheter arterial chemoembolization in unresectable cholangiocarcinoma: initial experience in a single institution. J. Vasc. Interv. Radiol. 2005; 16(3): 353-361.

https://doi.org/10.1097/01.RVI.0000143768.60751.7

20.   Kiefer MV, Albert M, McNally M, et al. Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: a 2-center study. Cancer. 2011; 117(7): 1498-1505.

https://doi.org/10.1002/cncr.25625

21.   Vogl TJ, Naguib NN, Nour-Eldin NE, et al. Transarterial chemoembolization in the treatment of patients with unresectable cholangiocarcinoma: results and prognostic factors governing treatment success. Int. J. Cancer. 2012; 31(3): 733-740.

https://doi.org/10.1002/ijc.26407

22.   Popov VV, Polikarpov AA, Alentiev SA, et al. Possibilities of regional chemotherapy in the treatment of unresectable cholangiocarcinoma. Klinicheskaja Patofisiologija. 2016; 3-1(22): 21-24 [In Russ].

https://doi.org/10.1111/liv.12364

23.   Li J, Wang Q, Lei Z, et al. Adjuvant transarterial chemoembolization following liver resection for intrahepatic cholangiocarcinoma based on survival risk stratification. Oncologist. 2015; 26(6): 640-647.

https://doi.org/10.1634/theoncologist.2014-0470

24.   Lu Z, Liu S, Yi Y, et al. Serum gamma-glutamyl transferase levels affect the prognosis in patients with intrahepatic cholangiocarcinoma who receive postoperative adjuvant transcatheter arterial chemoembolization: a propensity score matching study. Int. J. Surg. 2017; 37: 24-28.

https://doi.org/10.1016/j.ijsu.2016.10.015

25.   Wu ZF, Zhang HB, Yang N, et al. Postoperative adjuvant transcatheter arterial chemoembolization improves survival of intrahepatic cholangiocarcinoma patients with poor prognostic factors: results of a large monocentric series. Eur. J. Surg. Oncol. 2012; 38(7): 602-610.

https://doi.org/10.1016/j.ejso.2012.02.185

26.   Park HM, Yun SP, Lee EC, et al. Outcomes for patients with recurrent intrahepatic cholangiocarcinoma after surgery. Ann. Surg. Oncol. 2016; 23(13): 4392-4400.

https://doi.org/10.1245/s10434-016-5454-2

27.   Ge Y, Jeong S, Luo G-J, et al. Transarterial chemoembolization versus percutaneous microwave coagulation therapy for recurrent unresectable intrahepatic cholangiocarcinoma: development of a prognostic nomogram. Hepatobiliary Pancreat. Dis. Int. 2020; 19(2): 138-146.

https://doi.org/10.1016/j.hbpd.2020.02.005

28.   Aliberti C, Benea G, Tilli M, Fiorentini G. Chemoembolization (TACE) of unresectable intrahepatic cholangiocarcinoma with slow-release doxorubicin-eluting beads: preliminary results. Cardiovasc. Intervent. Radiol. 2008; 31(5): 883-888.

https://doi.org/10.1007/s00270-008-9336-2

29.   Aliberti C, Carandina R, Sarti D, et al. Chemoembolization with drug-eluting microspheres loaded with doxorubicin for the treatment of cholangiocarcinoma. Anticancer Res. 2017; 37(4): 1859-1863.

https://doi.org/10.21873/anticanres.11522

30.   Kuhlman JB, Euringer W, Spangenberg HC, et al. Treatment of unresectable cholangiocarcinoma: conventional transarterial chemoembolization compared with drug eluting bead-transarterial chemoembolization and systemic chemotherapy. Eur. J. Gastroenterol. Hepatol. 2012; 24(4): 437-443.

https://doi.org/10.1097/MEG.0b013e3283502241

31.   Schiffman SC, Metzger T, Dubel G, et al. Precision hepatic arterial irinotecan therapy in the treatment of unresectable cholangiocellular carcinoma: optimal tolerance and prolonged overall survival. Ann. Surg. Oncol. 2011; 18(2): 431-438.

https://doi.org/10.1245/s10434-010-1333-4

32.   Ray CE, Edwards A, Smith MT, et al. Meta-analysis of survival, complications, and imaging response following chemotherapy-based transarterial therapy in patients with unresectable intrahepatic cholangiocarcinoma. J. Vasc. Interv. Radiol. 2013; 24(8): 1218-1226.

https://doi.org/10.1016/j.jvir.2013.03.019

33.   Radosa CG, Radosa JC, Grosche-Schlee S, et al. Holmium-166 radioembolization in hepatocellular carcinoma: feasibility and safety of a new treatment option in clinical practice. Cardiovasc. Intervent. Radiol. 2019; 42(3): 405-412.

https://doi.org/10.1007/s00270-018-2133-7

34.   Gangi A, Shah J, Hatfield N, et al. Intrahepatic cholangiocarcinoma treated with transarterial yttrium-90 glass microsphere radioembolization: Results of a single institution retrospective study. J. Vasc. Interv. Radiol. 2018; 29(8): 1101-1108.

https://doi.org/10.1016/j.jvir.2018.04.001

35.   Reimer P, Virarkar MK, Binnenhei M, et al. Prognostic factors in overall survival of patients with unresectable intrahepatic cholangiocarcinoma treated by means of yttrium-90 radioembolization: results in therapy-na?ve patients. Cardiovasc. Intervent. Radiol. 2018; 41(5): 744-752.

https://doi.org/10.1007/s00270-017-1871-2

36.   Al-Adra DP, Gill RS, Axford SJ, et al. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis. Eur. J. Surg. Oncol. 2015; 41(1): 120-127.

https://doi.org/10.1016/j.ejso.2014.09.007

37.   Zhen Y, Liu B, Chang Z, et al. A pooled analysis of transarterial radioembolization with ittrium-90 microspheres for the treatment of unresectable intrahepatic cholangiocarcinoma. Onco Targets Ther. 2019; 12: 4489-4498.

https://doi.org/10.2147/OTT.S.202875

38.   Rayar M, Sulpice L, Edeline J, et al. Intra-arterial yttrium-90 radioembolization combined with systemic chemotherapy is a promising method for downstaging unresectable huge intrahepatic cholangiocarcinoma to surgical treatment. Ann. Surg. Oncol. 2015; 22(9): 3102-3108.

https://doi.org/10.1245/s10434-014-4365-3

39.   Bargellini I, Mosconi C, Pizzi G, et al. Yttrium-90 radioembolization in unresectable intrahepatic cholangiocarcinoma: Results of a multicenter retrospective study. Cardiovasc. Intervent. Radiol. 2020; 43(9): 1305-1314.

https://doi.org/10.1007/s00270-020-02569-4

40.   Edeline J, Touchefeu Y, Guiu B, et al. Radioembolization plus chemotherapy for first-line treatment of locally advanced intrahepatic cholangiocarcinoma: A phase 2 clinical trial. JAMA Oncol. 2019; 6(1): 51-59.

https://doi.org/10.1001/jamaoncol.2019.3702

41.   White J, Carolan-Rees G, Dale M, et al. Yttrium-90 transarterial radioembolization for chemotherapy-refractory intrahepatic cholangiocarcinoma: a prospective, observational study. J. Vasc. Interv. Radiol. 2019; 30(8): 1185-1192.

https://doi.org/10.1016/j.jvir.2019.03.018

42.   Buettner S, Braat AJAT, Margonis GA, et al. Yttrium-90 radioembolization in intrahepatic cholangiocarcinoma: a multicenter retrospective analysis. J. Vasc. Interv. Radiol. 2020; 31(7): 1035-1043.

https://doi.org/10.1016/j.jvir.2020.02.008

43.   Akinwande O, Shah V, Mills A, et al. Chemoembolization versus radioembolization for the treatment of unresectable intrahepatic cholangiocarcinoma in a single institution: image-based efficacy and comparative toxicity. Hepatic Oncology. 2017; 4(3): 75-81.

https://doi.org/10.2217/hep-2017-0005

44.   Currie BM, Soulen MC. Decision making: intra-arterial therapies for cholangiocarcinoma – TACE and TARE. Semin. Intervent. Radiol. 2017; 34(2): 92-100.

https://doi.org/10.1055/s-0037-1602591

45.   Hyder O, Marsh JW, Salem R, et al. Intra-arterial therapy for advanced intrahepatic cholangiocarcinoma: a multi-institutional analysis. Ann. Surg. Oncol. 2013; 20(12): 3779-3786.

https://doi.org/10.1245/s10434-013-3127-y

46.   Boehm LM, Jayakrishnan TT, Miura JT, et al. Comparative effectiveness of hepatic artery based therapies for unresectable intrahepatic cholangiocarcinoma. J. Surg. Oncol. 2015; 111(2): 213-220.

https://doi.org/10.1002/jso.23781

47.   Yang L, Shan J, Shan L, et al. Trans-arterial embolisation therapies for unresectable intrahepatic cholangiocarcinoma: a systematic review. J. Gastrointest. Oncol. 2015; 6(5): 570-588.

https://doi.org/10.3978/j.issn.2078-6891.2015.055

48.   Wright GP, Perkins S, Jones H, et al. Surgical resection does not improve survival in multifocal intrahepatic cholangiocarcinoma: a comparison of surgical resection with intra-arterial therapies. Ann. Surg. Oncol. 2018; 25(1): 83-90.

https://doi.org/10.1245/s10434-017-6110-1

49.   Ebata T, Yokoyama Y, Igami T, et al. Portal vein embolization before extended hepatectomy for biliary cancer: current technique and review of 494 consecutive embolizations. Dig. Surg. 2012; 29(1): 23-29.

https://doi.org/10.1159/000335718

50.   Higuchi R, Yamamoto M. Indications for portal vein embolization in perihilar cholangiocarcinoma. J. Hep. Bil. Pancr.Sci. 2014; 21(86): 542-549.

https://doi.org/10.1002/jhbp.77

Abstract

Background: advantages of endobiliary photodynamic therapy (PDT) described in the first part of review, namely: the safety of the intervention, the predictability and reproducibility of the effect, the absence of rough scarring of bile ducts, the possibility of repeating of procedures, affordability financially and economically - make this technology preferred among others locoregional effects in patients with hilus cholangiocarcinoma.

Aim: was to get a clinical specialist' view of endobiliary PDT as the perspective method: to describe dynamics of photosensitizer (PS) accumulation by tumor in vivo, to describe tools for delivering light into the lumen of bile ducts and intervention technique, to describe characteristics of light dosimetry, and to analyze immediate and long-term results of intra-duct photo exposure.

Material and methods: 66 domestic and foreign literary sources were analyzed.

Conclusion: endobiliary photodynamic therapy is a safe and effective method of locoregional treatment of patients with hilar cholangiocarcinoma, which significantly increases the duration and improves the quality of life of previously considered incurable patients.

 

References 

1.     Akopov AL, Rusanov AA, Papayan GV, Kazakov NV, Gerasin AV, Urtenova MA. Endobronchial photodynamic therapy under fluorescence control: Photodynamic theranostics. Photodiagnosis Photodyn Ther. 2017 Sep; 19: 7377.

2.     Goryainov SA. et al. Intraoperative fluorescence diagnostics and laser spectroscopy with repeated operations for brain gliomas. Questions of Neurosurgery named after NN Burdenko. 2014; 78 (2): 22-31 [In Russ].

3.     Yaroslavtseva-Isaeva EV, Kaplan MA, Kapinus VN, Spichenkova IS, Sokol N.I. Fluorescent diagnosis of malignant tumors of the skin with photosensitizers of chlorine series. Biomedical Photonics. 2018; 7(1): 13-20 [In Russ].

4.     Chissov VI, Sokolov VV, Bulgakova NN, Filonenko EV. Fluorescent endoscopy, dermatoscopy, spectrophotometry in the diagnosis of malignant tumors of main localizations. Russian Biotherapeutic Journal. 2003; 5(4): 42-56 [In Russ].

5.     Likhvantseva VG, Osipova EA, Loschenov VB, Kuzmin SG, Vorozhtsov GN. The method of differential diagnosis of eyelid skin. Patent RF № RU 2350262 C2. 2009. [In Russ].

6.     Rusakov IG, Teplov AA, Ulyanov RV, Filonenko EV. Fluorescent cystoscopy in patients with non-muscularinvasive bladder cancer. Biomedical photonics. 2015; 3: 29-35 [In Russ].

7.     Zykov AE. Laser fluorescence diagnostics and photodynamic therapy for cervical disease. Abstract of dissertation for the degree of candidate of medical sciences , Moscow 2011; 21 [In Russ].

8.     Denisova ED, Apolikhina IA, Bulgakova NN. Fluorescence diagnostics and photodynamic therapy of genital warts. Obstetrics and Gynecology. 2011; 8: 112-116 [In Russ].

9.     Silvia Affo, Le-Xing Yu, Robert F Schwabe. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Ann Rev Pathol. 2017 Jan 24; 12: 153-186.

10.   Namikawa T, Yatabe T, Inoue K, Shuin T, Hanazaki K. Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer. World J Gastroenterol. 2015 Aug 7; 21(29): 8769-8775.

11.   Kishi K, Fujiwara Y Yano M, Motoori M, Sugimura K, Takahashi H, Ohue M, Sakon M (2016) Usefulness of diagnostic laparoscopy with 5-aminolevulinic acid (ALA)-mediated photodynamic diagnosis for the detection of peritoneal micrometastasis in advanced gastric cancer after chemotherapy. Surg Today. 2016 Dec;46 (12): 1427-1434.

12.   Shiryayev AA, Musaev GKh, Loschenov MV, Borodkin AV, Levkin VV, Okhotnikova NL, Volkov VV, Makarov VI, Loschenov VB. Fluorescent diagnosis and photodynamic therapy in combined treatment of cholangiocellular cancer. Biomedical Photonics. 2016; 5(4): 15-24 [In Russ].

13.   Goldman L. The biomedical laser: technology and clinical application. N.Y: Springer-Verlag, 1981; 342.

14.   Ivanov AV. Fiber optics. M .: Cyrus Company Systems, 1999; 342 [In Russ].

15.   Isaev SK Physics of fiber-optic devices. M .: MSU, 1986; 219 [In Russ].

16.   Gower J. Optical Communication Systems: Trans from English. M .: Radio and communication, 1989; 504.

17.   Thielen Patrick Woodtli Alain Light diffusing device for photodynamic treatment of organs United States Patent 6315775 Medlight S.A. (Ecublens, CH) 11/13/2001.

18.   Korobeynikov AG, Gatchin YuA, Dukelsky KV, Ter-Nersesyants E.V. Technological methods for reducing the level of optical losses in microstructured optical fibers. Scientific and Technical Journal of Information Technologies, Mechanics and Optics Scientific and Technical Journal of Information Technologies, Mechanics and Optics 2014; 1 (89) [In Russ].

19.   Lee Tae Yoon , Cheon Young Koog, Shim Chan Sup. Photodynamic Therapy in Patients with Advanced Hilar Cholangiocarcinoma: Percutaneous Cholangioscopic Versus Peroral Transpapillary Approach. Photomed Laser Surg. 2016 Apr;34(4):150-6.

20.   Frantsev DYu, Shorikov MA, Lapteva MG. Methodical aspects of percutaneous endobiliary photodynamic therapy in hilar cholangiocarcinoma inoperable patients. Actual problems of hepatopancreobiliary surgery. Materials of the XXIV International Congress of the Association of Hepa

 

Abstract

Background: hilar cholangiocarcinoma (Klatskin tumor) is a rare and severe hepatobiliary malignancy of proximal bile ducts with dismal prognosis, slow periductal growth, late metastatic spread and is mostly fatal due to local complications. Surgical resection is considered to be the only curative method to the date, but its results aren't satisfactory as the majority of patients (70-80%) aren't suitable surgical candidates due to a large tumor extent in local hilar area. Moreover, local recurrence rate reaches 80% over 7 years. Thus endobiliary loco-regional technologies have been proposed, one of which is a photodynamic therapy (PDT).

Aim: was to provide provide a preclinical rationale of PDT in Klatskin tumor patients: to describe principles and mechanisms of the method and summary experimental studies data; this can prepare the reader for the second part of the review, which is based on the analysis of clinical studies and can give practical orientation.

Material and methods: 63 domestic and foreign literature sources were analyzed.

Conclusion: endobiliary photodynamic therapy showed its safety and efficacy in many experimental studies and can successfully be applied in clinical practice. 

 

 

References

1.     Uzdenskii AB. Cellular-molecular mechanisms of photodynamic therapy 2010, St. Petersburg «Science» p.3-4, 13-14, 327. [In Russ].

2.     Tsyb AF, et al. Photodynamic therapy, «Medical Information Agency» 192 p., 2009, Moscow [In Russ].

3.     Reshetnikov AV. Photosensitizers in modern clinical practice (review). Materials of the scientific and practical conference of otorhinolaryngologists of the Central Federal District of the Russian Federation «Laser technologies in otorhinolaryngology» ed. V.G. Zenger and A.N. Nasedkina, Tula September 26-28, 2007 [In Russ].

4.     Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun. 2003 Jun 6; 305(3): 761-770.

5.     Girotti AW. Photodynamic lipid peroxidation in biological systems. Photochem Photobiol. 1990 Apr; 51(4): 497-509.

6.     Hsieh YJ, Wu CC, Chang CJ, Yu JS. Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J Cell Physiol. 2003 Mar;194(3): 363-375.

7.     Berg K, Moan J. Lysosomes as photochemical targets. Int J Cancer. 1994 Dec 15; 59 (6): 814-822.

8.     Berg K, Moan J. Lysosomes and microtubules as targets for photochemotherapy of cancer. Photochem Photobiol. 1997 Mar; 65(3): 403-409.

9.     Chernyak BV, Izyumov DS, Lyamzaev KG, et al. Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Biochim Biophys Acta. 2006 May- Jun;1757 (5-6): 525-534. Epub 2006 Apr 7.

10.   Zhang LJ, O'Shea D, Zhang CY, et al. Evaluation of a bacteriochlorin-based photosensitizer's anti-tumor effect in vitro and in vivo. J Cancer Res Clin Oncol. 2015 Nov; 141(11): 1921-1930.

11.   Zhang LJ, Yan YJ, Liao PY, et al. Synthesis and antitumor activity evaluation of a novel porphyrin derivative for photodynamic therapy in vitro and in vivo. Tumour Biol. 2016 May; 37(5): 6923-6933.

12.   Shi R, Li C, Jiang Z, et al. Preclinical Study of Antineoplastic Sinoporphyrin Sodium-PDT via In Vitro and In Vivo Models. Molecules. 2017 Jan 11; 22(1). PII: E112.

13.   Korbelik M, Krosl G, Olive PL, Chaplin DJ. Distribution of Photofrin between tumour cells and tumour associated macrophages. Br. J. Cancer (I991), 64, 508512.

14.   Korbelik M, Krosl G. Photofrin accumulation in malignant and host cell populations of various tumours. British Journal of Cancer (1996) 73, 506-513.

15.   Sharma S, Jajoo A, Dube A. 5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines. J Photochem Photobiol B. 2007 Sep 25; 88(2-3): 156-162. Epub 2007 Aug 2.

16.   Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011 Jul-Aug;61(4): 250-281. doi: 10.3322/caac.20114. Epub 2011 May 26.

17.   Moan J, Peng Q, Sorensen R, et al. The biophysical foundations of photodynamic therapy. Endoscopy. 1998 May; 30 (4): 387-391.

18.   Profio AE, Doiron DR. Transport of light in tissue in photodynamic therapy. Photochem Photobiol 1987; 46: 591-599.

19.   Shackley DC, Whitehurst C, Moore JV, et al. Light penetration in bladder tissue: implication for the intravescical photodynamic therapy of bladder tumours. BJU Int 2000 l86: 638-643.

20.   Melo CA, Lima AL, Brasil IR, et al. Characterization of light penetration in rat tissues. J Clin Laser Med Surg. 2001 Aug; 19 (4): 175-179.

21.   Silvia Affo, Le-Xing Yu, Robert F Schwabe. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annu Rev Pathol. 2017 Jan 24; 12: 153-186.

22.   Parsa P, Jacques SL, Nishioka NS. Optical properties of rat liver between 350 and 2200 nm. Appl Opt. 1989 Jun 15; 28(12): 2325-30.

23.   Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci. 2002; 17: 173-186.

24.   Stranadko EF, Armichev AV, Geynits AV. Light sources for photodynamic therapy. Laser medicine, - 2011. - Vol. 15, no. 3: 63-69. [In Russ].

25.   Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci. 2018 Aug 8; 17(8): 1003-1017.

26.   Lima AC, et al. Low-Level Laser and Light-Emitting Diode Therapy for Pain Control in Hyperglycemic and Normoglycemic Patients Who Underwent Coronary Bypass Surgery with Internal Mammary Artery Grafts: A Randomized, Double-Blind Study with Follow-Up, Pho- tomed. Laser Surg., 2016, 34(6), 244-251. doi: 10.1089/pho.2015.4049

27.   Lima AC, et al. Photobiomodulation (Laser and LED) on Sternotomy Healing in Hyperglycemic and Normoglycemic Patients Who Underwent Coronary Bypass Surgery with Internal Mammary Artery Grafts: A Randomized, Double-Blind Study with Follow-Up, Photomed. Laser Surg., 2017, 35(1), 24-31. doi: 10.1089/pho.2016.4143

28.   Ammar TA. Monochromatic Infrared Photo Energy versus Low Level Laser Therapy in Patients with Knee Osteoarthritis, J. Lasers Med. Sci., 2014, 5(4), 176-182.

29.   Freitas AC, et al. Chemotherapy-induced oral mucositis: effect of LED and laser phototherapy treatment protocols, Photomed. Laser Surg., 2014, 32(2), 81-87.

30.   Reeds KB, Ridgway TD, Higbee RG, Lucroy MD. Non-coherent light for photodynamic therapy of superficial tumours in animals. Vet Comp Oncol. 2004 Sep;2(3):157- 63. doi: 10.1111/j.1476-5810.2004.00052.x.

31.   Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem. Photobiol. 1992; 55 (1): 145-157

32.   Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J. Natl. Cancer Inst. 1998; 90(12): 889-905.

33.   Dougherty TJ. An update on photodynamic therapy applications. J Clin Laser Med Surg. 2002 Feb; 20(1): 3-7.

34.   Chen B, Pogue BW, Goodwin IA. Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor. Radiat. Res.- 2003.- №160.- Р452-459.

35.   Gollnick SO, Owczarczak B, Maier P. Photodynamic therapy and anti-tumor immunity. Lasers Surg Med. 2006 Jun; 38(5): 509-515.

36.   Gollnick SO, Brackett CM. Enhancement of antitumor immunity by photodynamic therapy. Immunol Res. 2010 Mar; 46(1-3): 216-226.

37.   Pizova K, Tomankova K, Daskova A, et al. Photodynamic therapy for enhancing antitumour immunity. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012 Jun; 156(2): 93-102.

38.   Siddiqui SH, Awan KH, Javed F. Bactericidal efficacy of photodynamic therapy against Enterococcus faecalis in infected root canals: a systematic literature review. Photodiagnosis Photodyn Ther. 2013 Dec; 10(4): 632-643.

39.   Diniz IM, Teixeira KI, Araujo PV, et al. Evaluation of antibacterial photodynamic therapy effects on human dental pulp cell cultures. Photodiagnosis Photodyn Ther. 2014 Sep; 11(3): 300-306.

40.   Javed F, Samaranayake LP, Romanos GE. Treatment of oral fungal infections using antimicrobial photodynamic therapy: a systematic review of currently available evidence. Photochem Photobiol Sci. 2014 May; 13(5): 726-734.

41.   Fumes AC, da Silva Telles PD, Corona SAM, Borsatto MC. Effect of aPDT on Streptococcus mutans and Candida albicans present in the dental biofilm: Systematic review. Photodiagnosis Photodyn Ther. 2018 Mar; 21: 363366.

42.   Gintovt OI. The use of intraductal photoradiation in the complex treatment of patients with cholangitis of benign etiology: author. dis.cand. Med. Sciences O.I. Gintovt. St. Petersburg, 2008.- p. 18. [In Russ].

43.   Panteleev VS. Photodynamic effects in combination with laser antibiotic therapy in patients with purulent-septic complications. Author. Dis.doctor Med. Sciences V.S. Panteleyev. - Ufa, 2012. - P24-35 [In Russ].

44.   Vasilyev NE, Ogirenko AP. Antimicrobial photodynamic therapy. Laser medicine. - 2002. - V. 6. - №1. - p. 32-38. [In Russ].

45.   Efimova EG, Cheida AA, Garasko EV, et al. Antimicrobial effects of photodynamic therapy. Rus. bioter. journals 2007. No. 1. P. 15 [In Russ].

46.   Deshuk AN. Photodynamic therapy of experimental acute cholecystitis A.N. Deshuk, P.V. Garelik. Surgery News .- 2012.- Vol. 20, No. 5.- P. 3-10. [In Russ].

47.   Kiesslich T, Berlanda J, Plaetzer K, et al. Comparative characterization of the efficiency and cellular pharmacokinetics of Foscan- and Foslip-based photodynamic treatment in human biliary tract cancer cell lines. Photochem Photobiol Sci. 2007 Jun; 6 (6): 619-627.

48.   Cao LQ, Xue P, Lu HW, et al. Hematoporphyrin derivative-mediated photodynamic therapy inhibits tumor growth in human cholangiocarcinoma in vitro and in vivo. Hepatol Res. 2009 Dec; 39(12): 1190-1197.

49.   Wang JB, Liu LX, Pan SH, et al. Therapeutic effect of photodynamic therapy using hemato-porphyrin monomethyl ether (HMME) on human cholangiocarcinoma cell line QBC939. Neoplasma. 2010; 57(1): 79-85.

50.   Kim CH, Chung CW, Choi KH, et al. Effect of 5-aminolevulinic acid-based photodynamic therapy via reactive oxygen species in human cholangiocarcinoma cells. Int J Nanomedicine. 2011; 6: 1357-1363.

51.   Chung CW, Kim CH, Lee HM, et al. Aminolevulinic acid derivatives-based photodynamic therapy in human intra- and extrahepatic cholangiocarcinoma cells. Eur J Pharm Biopharm. 2013 Nov; 85(3 Pt A): 503-510.

52.   Chen YJ, Jiang HT, Cao JY. Influence of Photodynamic Therapy on Apoptosis and Invasion of Human Cholangiocarcinoma QBC939 Cell Line. Chin Med Sci J. 2015 Dec; 30(4): 252-259.

53.   Sirica AE, Zhang Z, Lai GH, et al. A novel «patient-like» model of cholangiocarcinoma progression based on bile duct inoculationof tumorigenic rat cholangiocyte cell lines. Hepatology. 2008 Apr;47(4):1178-1190.

54.   Wong K, Song LM, Wang KK, Zinsmeist AR. Mono-L-aspartyl chlorin e6 (NPe6) and hematoporphyrin derivative (HpD) in photodynamic therapy administered to a human cholangiocarcinoma model. Cancer. 1998; 82: 421-427

55.   Cadamuro M, Brivio S, Stecca T, et al. Animal models of cholangiocarcinoma: What they teach us about the human disease. Clin Res Hepatol Gastroenterol. 2018 Oct; 42(5): 403-415.

56.   Loeuillard E, Fischbach SR, Gores GJ, Rizvi S. Animal models of cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis. 2018 Apr 5. PII: S0925- 4439(18)30124-8.

57.   Tzerkovsky DA. Multiple-field interstitial photodynamic therapy of subcutaneously transplanted cholangiocellular carcinoma RS-1 in rats. Exp Oncol. 2017 Jul;39(2):117-120.

58.   van Hillegersberg R, Marijnissen JP, Kort WJ, et al. Interstitial photodynamic therapy in a rat liver metastasis model. Br J Cancer 1992; 66: 1005-14.

59.   Rovers JP, Saarnak AE, Molina A, et al. Effective treatment of liver metastases with photodynamic therapy, using the second-generation photosensitizer meta-tetra (hydroxyphenyl) chlorine (mTHPC), in a rat model. Br J Cancer 1999; 81: 600-608.

60.   Douillard S, Olivier D, Patrice T. In vitro and in vivo evaluation of Radachlorin(R) sensitizer for photodynamic therapy. Photochem Photobiol Sci. 2009 Mar; 8(3): 405413.

61.   Wang X, Li J, Li L, Li X. Photodynamic Therapy-Induced Apoptosis of Keloid Fibroblasts is Mediated by Radical Oxygen Species In Vitro. Clin Lab. 2015; 61(9): 1257-1266.

62.   Zhang C, Wang J, Chou A, et al. Photodynamic therapy induces antifibrotic alterations in primary human vocal fold fibroblasts. Laryngoscope. 2018 Sep; 128(9): E323-E331.

63.   Mendoza-Garcia J, Sebastian A, Alonso-Rasgado T, Bayat A. Ex vivo evaluation of the effect of photodynamic therapy on skin scars and striae distensae. Photodermatol photoimmunol photomed. 2015; 31: 239-251.

 

 

Abstract:

Aim: was to estimate possibilities of optical coherence tomography (OCT) in diagnostics of pathology of bile ducts in combination with percutaneous transhepatic biliary drainage (PTBD).

Materials and methods: examined 5 patients with obstructive jaundice, suspected cancerous etiology OCT was performed during or 5-14 days after PTBD. For morphological confirmation of results we performed forceps intraductal biopsies.

Results: tomographic evidences of the malignant stricture were revealed in 4 (80%) patients anc in 1 patient benign stricture was determined. Diagnoses were confirmed histologically (80%) and clinically (20%). Sensitivity of the OCT was 100%.

Conclusion: percutaneous transhepatic OCT appeared to be a perspective method for differential diagnostics of biliary strictures. 

 

References

1.     Polikarpov A.A. Rentgenojendovaskuljarnye vmeshatel'stva v lechenii nerezektabel'nyh zlokachestvennyh opuholej pecheni. [Endovascular interventions in treatment of nonresectable malignant tumors of liver] Avtoreferat. Diss. dokt. med. nauk. S.Peterburg. 2006; S 26 [In Russ].

2.     Shajn A.A. Rak organov pishhevarenija. [Cancer of digestive organs] Tjumen'. Skorpion. 2000; 184-188 [In Russ].

3.     Soares K.C., Kamel I., Cosgrove D.P., et al. Hilar cholangiocarcinoma: diagnosis, treatment options, and management. Hepatobiliary Surg Nutr. 2014; 3 (1): 18-34.

4.     Madariaga J.R., Iwatsuki S.,Todo S. et al. Liver resection for hilar and peripheral cholangiocarcinomas: a study of 62 cases. Annals of Surgery. 1998; 227 (1): 70-79.

5.     Heimbach J.K., Haddock M.G., Alberts S.R. et al. Transplantation for hilar cholangiocarcinoma. Liver Transplantation. 2004; 10 (2): 65 -68.

6.     Denisenko A.G. Opticheskaja kogerentnaja tomografija v diagnostike novoobrazovanij zheludochno-kishechnogo trakta. [Optical coherence tomography in diagnostics of neoplasms of digestive tract]Avtoreferat. Diss. kand. med. nauk. N. Novgorod. 2006; S 20 [In Russ].

7.     Zagajnova E.V. Diagnosticheskaja cennost' opticheskoj kogerentnoj tomografii v jendoskopii. [Diagnostic value of optical coherence tomography in endoscopy]Avtoreferat. Diss. dokt. med. nauk. N. Novgorod. 2007; S27 [In Russ].

8.     Arvanitakis M., Hookey L., Tessier G. et al. Intraductal optical coherence tomography during endoscopic retrograde cholangiopancreatography for investigation of biliary strictures. Endoscopy. 2009; 41: 696-701. [PMID: 19618343 D0I:10.1055/s-0029-1214950].

9.     de Bellis M., Sherman S., Fogel E. L. et al. Tissue sampling at ERCP in suspected malignant biliary strictures (Part 2). Gastrointest Endosc. 2002; 56: 720-730 [PMID: 12397282 DOI: 10.1067/mge.2002.129219].

10.   Ross W.A., Wasan S.M., Evans D.B. et al. Combined EUS with FNA and ERCP for the evaluation of patients with obstructive jaundice from presumed pancreatic malignancy. Gastrointest Endosc. 2008; 68: 461-466 [PMID: 18384788 DOI: 10.1016/j.gie.2007.11.033].

11.   Shahova N.M. Kliniko-jeksperimental'noe obosnovanie primenenija opticheskoj kogerentnoj tomografii v medicinskoj praktike [Clinical and experimental basics of application of optical coherence tomography in medical practice]Avtoreferat. Diss. dokt. med. nauk. N. Novgorod. 2004; 19c  [In Russ].

12.   Demin V.V., Dolgov S.A., Demin D.V. Sravnenie informativnosti opticheskoj kogerentnoj tomografii i vnutrisosudistogo ul'trazvukovogo skanirovanija dlja ocenki rezul'tatov implantacii stentov s lekarstvennym pokrytiem. Materialy V rossijskogo s'ezda intervencionnyh kardioangiologov. [Comparison of informative value of optical coherence tomography and intravascular ultrasound in estimation of results of implantation of drug-eluting stents.] Mezhdunarodnyj zhurnal intervencionnoj kardioangiologii. 2013; 35: 41- 42 [In Russ].

13.   Mahmud S.M., May G.R., Kamal M.M. et al. Imaging pancreatobiliary ductal system with optical coherence tomography: A review. World J Gastrointest Endosc. 2013; 5(11): 540-550. ISSN 1948-5190 (online).

14.   Tearney G.J., Brezinski M.E., Southern J.F. et al. Optical biopsy in human pancreatobiliary tissue using optical coherence tomography. Dig DisSci. 1998; 43: 11931199 [PMID: 9635607 DOI: 10.1023/A:1018891304453].

15.   Testoni P.A., Mariani A., Mangiavillano B. et al. Main pancreatic duct, common bile duct and sphincter of Oddi structure visualized by optical coherence tomography: An ex vivo study compared with histology. Dig Liver Dis. 2006; 38: 409-414 [PMID: 16584931 DOI: 10.1016/j.dld. 2006.02.014].

16.   Testoni P.A., Mangiavillano B. Optical coherence tomography in detection of dysplasia and cancer of the gastrointestinal tract and bilio-pancreatic ductal system. World J Gastroenterol. 2008; 14: 6444-6452 [PMID: 19030194 DOI: 10.3748/wjg.14.6444].

17.   Testoni P.A., Mariani A., Mangiavillano B. Intraductal optical coherence tomography for investigating main pancreatic duct strictures. Am J Gastroenterol. 2007; 102: 269-274 [PMID: 17100970 DOI: 10.1111/j. 1572-0241. 2006.00940.x].

 

 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы