Website is intended for physicians
Search:
Всего найдено: 3

Abstract:

Introduction: one of directions in development of intravascular diagnostic methods is creation of stations or development of methods that allow combining or uniting possibilities of different modalities. This approach makes it possible to overcome limitations inherent in each method of invasive vascular diagnostics, including angiography. This work is devoted to the analysis of possibilities and first results of using the SyncVision station (Philips Volcano), which allows, in various combinations, to carry out joint registration of angiography data, intravascular ultrasound (IVUS) and instantaneous blood flow reserve (iFR) in various combinations - a non-hyperemic version of fractional flow reserve study.

Aim: was to describe possibilities provided by the use of joint recording of data from angiography, IVUS and real-time instantaneous blood flow reserve, the technique for performing these procedures, as well as to analyze the application of these methods in a department with a large volume of intravascular studies.

Material and methods: the first experience in Russian Federation of the clinical use of the SyncVision station, which is an addition to the s5i intravascular ultrasound system (Philips Volcano), is presented. The station allows you to implement five options that expand the operator's ability to analyze study data and develop a treatment strategy directly at the operating table: co-registration of angiography and intravascular ultrasound (IVUS) data; co-registration of angiography data and instantaneous flow reserve (iFR); triple co-registration - angiography, IVUS and iFR; modification of the program for the quantitative calculation of coronary artery stenosis (QCA); real-time image enhancement software for interventional devices.

Results: studies using co-registration with angiography accounted for 21% of all IVUS procedures and 62,4% of iFR procedures. In 67,3% of all studies with angio-IVUS co-registration, the indication for this diagnostic variant was an extended lesion of artery, which required clarification of length of stenotic area, localization of reference segments, and diameter of artery at different levels. In 30 of these patients, triple co-registration was performed. To clarify the hemodynamic significance of lesion with an angiographically indeterminate or borderline picture, co-registration was performed in 13,2% of all cases, to study a bifurcation lesion with a significant difference in the reference segments and angiographically difficult to determine the entry of lateral branch - in 7,3%.

Based on results of triple co-registration, the decision to perform surgical treatment was made in 30 out of 42 patients (71,4%).

Conclusion: joint registration of IVUS data, coronary angiography, and instantaneous flow reserve (iFR) in real time, forms a new diagnostic modality that significantly expands possibilities of intraoperative examination and affects the planning or analysis of intervention results.

 

Abstract:

Introduction: the importance of intravascular diagnostic methods and the frequency of their use in clinical practice is steadily increasing. However, in the Russian Federation, studies on the analysis of possibilities of intravascular imaging or physiology are sporadic, and statistical data are presented only in very generalized form. This makes it relevant to create a specialized register dedicated to these diagnostic methods.

Aim: was to present the structure, tasks and possibilities of the Russian registry for the use of intravascular imaging and physiology based on results of the first year of its operation.

Material and methods: In total, in 2021, forms were filled out for 2632 studies in 1356 patients.

Studies included all types of intravascular imaging and physiology - intravascular ultrasound, optical coherence tomography, measurement of fractional flow reserve and non-hyperemic indices.

The registry's web-based data platform includes 14 sections and 184 parameters to describe all possible scenarios for applying these methodologies. Data entry is possible both from a stationary computer and from mobile devices, and takes no more than one minute per study. Received material is converted into Excel format for further statistical processing.

Results: 13 departments participated in the register, while the share of the eight most active ones accounted for 97,5% of all entered forms. On average, 1.9 studies per patient were performed, with fluctuations between clinics from 1,6 to 2,9. Studies of the fractional flow reserve accounted for 40% of total data array, intravascular ultrasound - 37%, optical coherence tomography - 23%. Of all studies, 80% were performed on coronary arteries for chronic coronary artery disease, 18% - for acute coronary syndrome, 2% were studies for non-coronary pathology. In 41% of cases, studies were performed at the diagnostic stage, without subsequent surgery. In 89,6% of cases, this was due to the detection of hemodynamically insignificant lesions, mainly by means of physiological assessment. In 72% of cases, the use of intravascular imaging or physiology methods directly influenced the tactics or treatment strategy - from deciding whether to perform surgery or not to choose the optimal size of instruments or additional manipulations to optimize the outcome of the intervention. In the clinics participating in the register, the equipment of all major manufacturers represented on the Russian market was used.

Conclusions: the design of the online registry database is convenient for data entry. Participation in the registry of most departments that actively and systematically use methods of intravascular imaging and physiology ensured the representativeness of obtained data for analysis in interests of both practical medicine and industry, as well as for scientific research in the field of intravascular imaging and physiology. The register has great potential for both quantitative and qualitative improvement.

 

authors: 

 

Abstract:

Introduction: the problem of the shortage of donor organs can be partially solved by expanding the donor selection criteria. The consequence of this is an increase in the risk of transmission of atherosclerotic lesions of the coronary arteries from the donor to the recipient. According to current publications, endovascular correction is the preferred treatment. Assessment of the hemodynamic significance of borderline stenosis of the coronary arteries in recipients, detected at the first coronary angiography in the early postoperative period, remains a topical issue.

Case report: article presents case report of results of endovascular correction of donor-associated lesion of coronary arteries in recipient under control of iFr.

Conclusion: due to the severity of patient's condition, the use of non-invasive methods for verifying myocardial ischemia is sharply limited, which determines the high importance of endovascular technologies for the physiological assessment of stenosis.

 

References

1.     Lee HY, Oh BH. Heart Transplantation in Asia. Circulation Journal. 2017; 81(5): 617-621.

https://doi.org/10.1253/circj.CJ-17-0162

2.     Yusen RD, Christie JD, Edwards LB, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Adult Lung and Heart-Lung Transplant Report. Focus Theme: Age. J Heart Lung Transplant. 2013; 32(10): 965-978.

3.     Sakhovsky SA, Izotov DA, Koloskova NN, et al. Angiograficheskaya otsenka ateroskleroticheskogo porazheniya koronarnikh arterii serdechnogo transplantata. Vestnik transplantologii i iskusstvennih organov. 2018; 20(4): 22-29 [In Russ].

https://doi.org/10.15825/1995-1191-2018-4-22-29

4.     Chestukhin VV, Ostroumov EN, Tyunyaeva IYu, et al. Bolezn’ koronarnikh arterii peresazhennogo serdtsa. Vozmozhnosti diagnostiki i lecheniya. Ocherki klinicheskoi transplantologii pod redakciei Got’e SV. M. 2009; 88-93 [In Russ].

5.     Darenskii DI, Gramovich VV, Zharova EA, et al. Diagnosticheskaya tsennost izmereniya momental’nogo rezerva krovotoka po sravneniyu s neinvazivnimi metodami viyavleniya ishemii miokarda pri otsenke funktsionalnoi znachimosti pogranichnikh stenozov koronarnikh arterii. Terapevticheskii arkhiv. 2017; 4: 15-21 [In Russ].

6.     Gramovich VV, Zharova EA, Mitroshkin MG, et al. Opredelenie porogovikh znachenii momental’nogo rezerva krovotoka pri otsenke funktsionalnoi znachimosti stenozov koronarnish arterii pogranichnoi stepeni tyazhesti s ispolzovaniem neinvazivnikh metodov verifikatsii ishemii miokarda v kachestve standarta. Evraziiskii kardiologicheskii zhurnal. 2016; 4: 34-41 [In Russ].

7.     Tonino PAL, De Bruyne B, Pijls NHJ, et al. Fractional Flow Reserve versus Angiography for Guiding Percutaneous Coronary Intervention. The New England Journal of Medicine. 2009; 360: 213-224.

https://doi.org/10.1056/NEJMoa0807611

8.     De Bruyne B, Pijls NH, Kalesan B, et al. FAME 2 Trial Investigators. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012; 367(11): 991-1001.

https://doi.org/10.1056/NEJMoa1205361

9.     Xaplanteris P, Fournier S, Pijls NHJ, et al. Five-Year Outcomes with PCI Guided by Fractional Flow Reserve. The New England Journal of Medicine. 2018; 379: 250-259.

https://doi.org/10.1056/NEJMoa1803538

10.   Barbato E, Toth GG, Johnson NP, et al. Prospective natural history study of coronary atherosclerosis using fractional flow reserve. Journal of the American College of Cardiology. 2016; 68(21): 2247-2255.

https://doi.org/10.1016/j.jacc.2016.08.055

11.   G?tberg M, Christiansen EH, Gudmundsdottir IJ, et al. Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PC. The New England Journal of Medicine. 2017; 376: 1813-23.

https://doi.org/10.1056/NEJMoa1616540

12.   Andell P, Berntorp K, Christiansen EH, et al. Reclassification of Treatment Strategy With Instantaneous Wave-Free Ratio and В Fractional Flow Reserve: A Substudy From the iFR-SWEDEHEART Trial. JACC: Cardiovascular Interventions. 2018; 11(20): 2084-2094.

https://doi.org/10.1016/j.jcin.2018.07.035

13.   Davies JE, Sen S, Dehbi HM, et al. Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI. The New England Journal of Medicine. 2017; 376: 1824-1834.

https://doi.org/10.1056/NEJMoa1700445

14.   Neumann FJ, Sousa-Uva M, Ahlsson A, et al. ESC Scientific Document Group; 2018 ESC/EACTS Guidelines on myocardial revascularization. European Heart Journal. 2019; 40(2): 87-165.

https://doi.org/10.1093/eurheartj/ehy394

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы