Website is intended for physicians
Search:
Всего найдено: 7

 

Abstract:

Aim: was to make preclinical and imaging tests of the trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (DCTA) complex as a universal contrast agent for MRI and single-photon emission imaging, with Mn (Cyclomang) and 99mTc- (Cyclotech), respectively.

Material and Methods: the complex of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (DCTA) was synthesized at the department of organic chemistry of National Research Tomsk Polytechnic university, using the original technology in the nanopowder phase using manganese (II) carbonate, or generator eluate 99mTc, and NaH2DCTA, resulting in a 0.5 M solution of Мn-DCTA or 99mTc-DCTA. LD50 values were determined in experiments on laboratory mice. A visualization study was performed in 4 cats and 3 dogs with malignant neoplasms of chest organs and in one dog with a tumor of the left pontocerebellar angle. All of them underwent consecutively MRI with contrast enhancement with Mn-DCTA and SPECT - with 99mTc-DCTA.

Results: for Cyclotech LD50 >18/ml/kg, for 0.5 M Mn-DCTA (Cyclomang) solution, the LD50 index significantly exceeds 16.9 ml/kg BW. Changes in the content of manganese in the blood plasma of rats when they were administered Mn-DCTA, did not occur. LD50 values allow us to assign the drug in accordance with Russian regulation GOST 12.1.007-76. to group 4 (low-hazard substances). In both cases, in the range of physiological pH, the thermodynamic stability constant is >19.3. In studies in animals with MRI, the enhancement index of T1-weighted spin-echo image of the tumor in all cases exceeded 1.7 (mean 1.82±0.10). When calculating the «tumor/back-ground» index for 99mTc-DCTA, it was 2.6-7.3 (mean 4.12±1.05).

Conclusion: DCTA complexes with manganese (II) - for enhancement in MRI and with 99mTc- for SPECT- have very close pharmacokinetic properties, are non-toxic, do not dissociate in physiological environments and can be further used for contrast enhancement in multimodal MRI-SPECT studies. Chelate agents of the 99mTc with thermodynamic stability constants over 16 may be employed in the nearest future as important source for the development of paramagnetic contrast agents binding Mn.

 

References

1.     Panov VO, Shimanovskiy NL. The diagnostic efficacy and safety of macrocyclic gadolinium-based magnetic resonance contrast agents. Russian J Radiol. 2017; 98(3): 159-166 [In Russ].

http://doi.org/10.20862/0042-4676-2017-98-3-159-166

2.     Shimanovskiy NL, Epinetov MA, Melnikov MYa. Molecular and nanopharmacology. Moscow, 2009; 624 [In Russ].

3.     National guidebook on nuclear medicine. Vol.1. Ed. by Lishmanov YuB, Chernov VI. Tomsk. STT Publ. 2010; 432 [In Russ].

4.     Litvinenko IV. The possibility of SPECT-CT in the diagnosis of coronary artery stenoses. Medical Visualization. 2015; (2): 53-66 [In Russ].

5.     Narkevich BYa, Ryzhkov AD, Komanovskaya DA et al. Estimation of radiation risks in SPECT/CT of skeletal bones. Medical Physics. 2019; 3 (83): 66-74 [In Russ].

6.     Madru R, Kjellman P, Olsson F et al. 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J Nucl Med. 2012; 53(3): 459-463.

http://doi.org/10.2967/jnumed.111.092437

7.     Onoprienko AV, Kostenikov NA, Velichko OB, et al. Use of Fused Images Combining Contrast-Enhanced MRI and 99mTc-MIBI SPECT in Diagnosis of Recidive Gliomas. Medical Visualization. 2004; (5): 38-46 [In Russ].

8.     Onoprienko A.V., Velichko O.B., Minin S.M. et al. Imaging of a Successful Medical Treatment of a Multiforme Glioblastoma by Means of Combination of Contrast-enhanced MRI and SPECT with 99mTc-Technetril. Medical Visualization. 2006; (2); 99-103 [In Russ].

9.     Ussov WYu, Belyanin ML, Bezlepkin Al et al. Magnetic Resonance Imaging of Brain Involvement in Dogs Using Paramagnetic Contrast Enhancement with Mn(II)-DCTA. Bull.Exp.Biol.Med. 2016; 161: 715-718.

http://doi.org/10.1007/s10517-016-3492-1

10.   Belyanin ML, Fedoushchak TA, Filimonov VD et al. Solid-nanophase synthesis and evaluation of manganese (II) complex with diethylentriaminpentaacetic acid as contrast agent for magnetic resonance imaging. Siberian medical journal (Tomsk). 2008; 23(2): 33-36 [In Russ].

11.   Zevatskiy YuE, Samoilov DV. Empiric method of quantification of influence of dissolvent on dissociation constants of carbonic acids. Zhurnal organicheskoi chimii. 2008; 44(1): 59-68 [In Russ].

12.   Kaviani S, Shahab S, Sheikhi M, Ahmadianarog M. DFT study on the selective complexation of meso-2,3-dimercaptosuccinic acid with toxic metal ions (Cd2+, Hg2+ and Pb2+) for pharmaceutical and biological applications. Journal o f Molecular Structure. 2019; (1176): 901-907.

13.   Mironov AN. Guidelines for conducting preclinical research of drugs. M. Grit and К Publ.house. 2012; 944 [In Russ].

14.   Rossotti F, Rossotti X. Determination of stability constants and other equilibrium constants in solutions. M. Mir Publ.house. 1965; 564 [In Russ].

15.   Medixant. RadiAnt DICOM Viewer [Software]. Version 2020.1. Mar 9, 2020.

URL: https://www.radiantviewer.com

16.   Ehman EC, Johnson GB, Villanueva-Meyer JE et al. PET/MRI: Where might it replace PET/CT? J Magn Reson Imaging. 2017; 46(5): 1247-1262.

http://doi.org/10.1002/jmri.25711

17.   Hochhegger B, Alves GR, Irion KL et al. PET/CT imaging in lung cancer: indications and findings. J.Bras.Pneumol. 2015; 41 (3): 264-274.

http://doi.org/10.1590/S1806-37132015000004479

18.   Ansheles AA., Sergienko VB. Interpretation of myocardial perfusion SPECT with attenuation correction. Russian Journal of Radiology. 2020; 101(1): 6-18 [In Russ].

http://doi.org/10.20862/0042-4676-2020-101-1-6-18

19.   Ussov WYu., Sinitsyn VE., Obradovich V. et al. Patterns of cerebral blood flow reactivity in adenosine stress­test in patients with carotid stenosis, evaluated with MRI and 99mTc-HMPAO SPECT brain study. Russian Journal of Radiology.2000; 81 (6): 4-9 [In Russ].

20.   Berry DJ, Torres Martin de Rosales R, Charoenphun P, Blower PJ. Dithiocarbamate complexes as radiopharmaceuticals for medical imaging. Mini Rev Med Chem. 2012; 12(12): 1174-1183.

http://doi.org/10.2174/138955712802762112

21.   Burilova EA, Ziyatdinova AB, Zyavkina Yul, Amirov RR. Influence of waterso;uble polymers on the formation of Manganese(II) complexomated in solutions. I Complexes with EDTA. Research proceedings of the Kazan University. Natural Sceinces. 2013; 155(2); 10-25 [In Russ].

22.   Belyanin ML, Prvulovich M, Karpova GV et al. Synthesis and evaluation of mangapentetate as paramagnetic contrast agent for magnetic resonance imaging. Diagnostic and Interventional Radiology. 2008; 2(1): 75-86 [In Russ].

23.   Meerovich IG, Gulyaev MV, Meerovich GA et al. Study of contrast agents based on phthalocyanin derivatives for magnetic resonance imaging. Russian chemical journal. 2013. 57(2): 110-114 [In Russ].

24.   Ussov WYu, Belyanin ML, Kodina GE et al. Magnetic resonance imaging of myocardium with paramagnetic contrast enhancement with Mn-methoxyisobutylisonitrile (Mn-MIBI) in an experiment. Medical visualization. 2016; (1): 31-38 [In Russ].

25.   Ussov VYu, Bezlepkin Al, Kovalenko AYu et al. Preclinical study of paramagnetic contrast enhancement with Mn(II)-dimercaptosuccinate complex in magnetic resonance imaging of primary tumor and metastatic spread of breast cancer. Diagnostic Radiology and Radiation Therapy. 2020; (1 (11)): 70-77 [In Russ].

http://doi.org/10.22328/2079-5343-2020-11-1-70-77

26.   Ussov VYu, Belyanin ML, Filimonov VD et al. Theoretical basis and experimental study of the Mn(II) complex with hexamethylpropylenaminoxim as a paramagnetic contrast agent for visualization of malignant tumors. Diagnostic Radiology and Radiation Therapy. 2019; (2 (10)): 42-49 [In Russ].

http://doi.org/10.22328/2079-5343-2019-10-2-42-49

27.   Serebrennikov W. Chemistry of rare earth elements (scandium, yttrium, lanthanides). Tomsk. TSU Publ. House. 1959; 531 [In Russ].

28.   Batyreva VA, Kozik W, Serebrennikov W, Yakunina GM. Synthesis of compounds of rare earth elements. Tomsk. TSU Publ. House. 1983; 144 [In Russ].

29.   Ussov VYu, Belyanin ML, Bezlepkin Al etal. Evaluation of Manganese-trans-1,2-Diaminocyclohexane-N,N,N’,N’-tetraacetate Complex (Cyclomang) as Paramagnetic Contrast Agent for Magnetic Resonance Imaging. Eksperimentalnaya i klinicheskaya farmakologiya. 2013; 76(10): 32-38 [In Russ].

 

Abstract:

The aim of the study was to evaluate results of percutaneous coronary interventions (PCI) in patients with ischemic cardiomyopathy (ICMP) - potential candidates for heart transplantation. The study included 37 patients with ICMP. All the patients before PCI and within the 7 days after it undergo ec-hocardiography and ECG-gated SPECT. The amount of irreversibly damaged myocardium of the left ventricle (LV) was about 50 % of its volume. In these patients ECG-gated SPECT did not show sufficient amount of the viable myocardium, capable to restore the heart function after revascularization. The main result of intervention was increase in survival rate of patients with ICMP within 4 years of observation in comparison with traditional methods of conservative therapy. The first clinical effect of PCI was disappearance or reduction of dyspnea, noted in the majority of the patients. These changes had been confirmed by improvement of a functional class of patients (NYHA class score increase to 3,2±0,5 from 1,7+65; p=0,007) and increase of tolerance to physical excersise. Positive changes of a clinical condition after PCI have taken place due to decrease in rigidity of LV myocardium: It became apparent due to decrease of LV end-diastolic pressure (35,7+9,3 vs. 23,5+9,9 Hg mm; p=0,04) and pressure in pulmonary artery (44+1 2 vs. 33+7 Hg mm; p=0,03). No changes of LV volumes and ejection fraction values in the given category of patients were seen.

 

 


Reference 

 

 

 

1.    Трансплантология. Руководство. Под ред. акад. В.И. Шумакова. М.: «ООО Медицинское информационное агентство». 2006.

 

 

2.    Allman K.C., Shaw L.J., Hachamovitch R., Udelson J.E. Myocardial Viability Testing and Impact of Revascularization on Prognosis in Patients With Coronary Artery Disease and Left Ventricular Dysfunction: A Meta-Analysis. J.Am. Coll. Cardiol. 2002; 39 (7): 1151-1158.

 

 

3.    Sciagra R., Leoncini M. Gated single-photon emission computed tomography. The present-day «one-stop-shop» for cardiac imaging. The quarterly journal of nuclear medicine. 2005; 49: 19-29.

 

 

4.    Гуреев СВ. Аортокоронарное шунтирование и трансплантация аутологичных стволовых клеток костного мозга в лечении ишемической сердечной недостаточности. Дис. д-ра мед. наук. М., 2004.

 

 

5.    Schinkel A., Poldermans D., Rizzello V, Vanoverschelde J., Elhendy A., Boersma E., Roelandt J., Bax J. Why do patients with ischemic cardiomyopathy and a substantial amount of viable myocardium not always recover in function after revascularization? J. Thorac. Cardiovasc. Surg. 2004; 127 (2): 385-390.

 

 

6.    Беленков Ю.Н., Агеев Ф.Т., Мареев В.Ю. Динамик диастолического наполнения и диастолического резерва левого желудочка у больных с хронической сердечной недостаточностью при применении различных типов медикаментозного лечения: сравнительное допплер-эхокардиографическое исследование. Кардиология. 1996; 9: 38-50.

 

 

7.    Grossman W Diastolic dysfunction in congestive heart failure. New Engl.J. Med. 1991; 325: 1557-1564.

 

 

8.    GerdesA.M.,KellermanS.E.,MooreJ.A,MufflyK.E., Clark L.C., Reaves P.Y., Malec K.B., McKeown P.P., Schocken D.D. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation. 1992; 6 (2): 426-430.

 

9.    Beltrami C.A., Finato N., Rocco M., Feruglio G.A. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation. 1994; 89 (1): 151-163.

 

 

Abstract:

Lipid core coronary plaques (LCPs), which cannot be reliably detected by conventional diagnostic measures, are widely considered to be the cause of most acute coronary syndromes. Accumulating evidence also indicates that LCPs may increase the risk of stenting complications. A catheter-based near-infrared spectroscopy (NIRS) system is now available for the detection of LCPs in the arteries of patients undergoing coronary angiography The system, which uses the well-documented ability of NIRS to determine the chemical composition of unknown substances, has been validated in an autopsy study and a clinical trial. The system has now been used in more than 300 patients and has provided novel information for use in assessment of coronary disease. Multiple studies are in progress to assess the full clinical benefit of NIRS for the goals of 1) improving the safety of stenting, 2) preventing a second coronary event in patients with known coronary disease, and 3) use as a possible component in a strategy for the primary prevention of coronary events.
 

 

References 

 

1.      Lloyd-Jones D., Adams R., Carnethon M. et al. Heart disease and stroke statistics-2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009; 119:480-486.

 

 

2.      Clarke M.C., Figg N., Maguire J.J. et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 2006; 12:1075-1080.

 

 

3.      Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med 1999, 340:115-126.

 

 

4.      Kagan A., Livsic A.M., Sternby N., Vihert A.M. Coronary-artery thrombosis and the acute attack of coronary heart-disease. Lancet 1968; 2:1199-1200.

 

 

5.      Goldsteinc J.A. CT angiography: imaging anatomy to deduce coronary physiology. Catheter Cardiovasc Interv 2009; 73:503-505.

 

 

6.      Giroud D., Li J.M., Urban P., et al. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol 1992; 69:729-732.

 

 

7.      Gonzalo N., GarcHa-GarcHa H.M., Ligthart J. et al. Coronary plaque composition as assessed by greyscale intravascular ultrasound and radiofrequency spectral data analysis. Int J Cardiova,sc Imaging 2008; 24:811-818.

 

 

8.      Schaar J.A., Mastik F., Regar E., et al. Current diagnostic modalities for vulnerable plaque detection. Curr Pharm Des 2007; 13:995-1001.

 

 

9.      Kips J.G., Segers P, Van Bortel L.M. Identifying the vulnerable plaque: a review of invasive and non-invasive imaging modalities. Artery Res 2008; 2:21-34.

 

 

10.    Uchida Y., Nakamura F., Tomaru T., et al. Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am. Heart J. 1995; 130:195-203.

 

 

11.    Ohtani T., Ueda Y., Mizote I., et al. Number of yellow plaques detected in a coronary artery is associated with future risk of acute coronary syndrome detection of vulnerable patients by angioscopy. J Am Coll Cardiol 2006; 47:2194-2200.

 

 

12.    Ishibashi F., Aziz K., Abela G., Waxman S. Update on coronary angioscopy: review of a 20-year experience and potential application for detection of vulnerable plaque. J. Interv. Cardiol. 2006; 19:17-25.

 

 

13.    Patel N.A., Stamper D.L., Brezinski M.E. Review of the ability of optical coherence tomography to characterize plaque, including a comparison with intravascular ultrasound. Cardiovasc Intervent Radiol 2005; 28:1-9.

 

 

14.    Yabushita H., Bouma B.E., Houser S.L., et al.Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106:1640-1645.

 

 

15.    Tearney G.J., Yabushita H., Houser S.L., et al. Quantifi cation of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003; 107:113-119.

 

 

16.    Yun S.H., Tearney G.J., Vakoc B.J. et al. Comprehensive volumetric optical microscopy in vivo. Nat Med 2007; 12:1429-1433.

 

 

17.    Lavine B., Workman J. Chemometrics. Ana,l Chem 2008, 80:4519-4531.

 

 

18.    Williams P., Norris K. Near-Infrared Technology in the Agriculture and Food Industries, edn 2. St. Paul, MN: American

 

 

19.    Association of Cereal Chemists Inc.; 2001; Ciurczak EW, Drennen JK: Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy. New York: Marcel Dekker, 2002;

 

 

20.    Mendelson Y: Pulse oximetry: theory and applications for noninvasive monitoring. Clin Chem 1992; 38:1601-1607.

 

 

21.    Moreno PR., Muller J.E.: Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods. Curr Opin Cardiol 2002; 17:638-647.

 

 

22.    Lodder R.A., Cassis L., Ciurczak E.W.: Arterial analysis with a novel near-IR fi ber-optic probe. Spectroscopy 1990; 5:12-17.

 

Possibilities of beam loading decrease during coronary arteries MSCT



DOI: https://doi.org/10.25512/DIR.2011.05.1.03

For quoting:
Sinitsyn V.E., Mershina E.A., Glazkova M.A., Arhipova I.M. "Possibilities of beam loading decrease during coronary arteries MSCT". Journal Diagnostic & interventional radiology. 2011; 5(1); 21-29.

 

Abstract:

Purpose. Was to compare beam loading and quality of coronary arteries’ imaging (CA) in case of using the 64-lise computed tomography (MSCT) in retro-and prospective electrocardiographic synchronization mode.

Materials and methods. 57 patients with coronar arteries disease suspicious were examined with the help of computed tomography (CT) coronarography in prospective (n = 27) and retrospective (n = 30) EKG-synchronization modes. All the experiments were held on multislice Discovery CT 750 MD («General Electric»). The quality of obtained CR images was estimated subjectively – from 1 (perfect quality) to 4 (non-

diagnostic).

Results. The analyses of obtained images during retro-and prospective EKG-synchronization did not reveal serious differences (1,4 ± 0,38

and 1,5 ± 0,46 accordingly). The effective dose during prospective EKG-synchronization was 59% less than during retrospective EKG-synchronization (3,8 ± 0,83 mSv and 9,3 ± 2,5 mSv, р < 0,05).

Conclusion. CT-coronarography in prospective EKG-synchronization mode leads to essential decrease in beam loading on the patient without deterioration of the received image quality.  

 

References 

1.    Gaemperli O. et al. Accuracy of 64-slice CT angiography for the detection of functionally relevant coronary stenoses as assessed with myocardial perfusion SPECT. Eur. J Nucl. Med. Mol. Imaging. 2007; 34: 1162–1171.

2.    Mollet N.R. et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005; 112: 2318–2323.

3.    Raff G.L. et al. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J. Am. Col. Cardiol. 2005; 46: 552–557.

4.    Scheffel H. et al. Accuracy of dual-source CT coronary angiography. First experience in a high pre-test probability population without heart rate control. Eur. Radiol. 2006; 16: 2739–2747.

5.    Husmann L. et al. Comparison of diagnostic accuracy of 64-slice computed tomography coronary angiography in patients with low, intermediate and high cardiovascular risk.

6.    Acad. Radiol. 2008; 15: 452–461. Leschka S. et al. Low kilovoltage cardiac dual-source CT. Аttenuation, noise, and radiation dose. Eur. Radiol. 2008; 18: 1809–1817.

7.    Hausleiter J. et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice. Impact of different scanning protocols on effective dose estimates. Circulation. 2006; 113: 1305–1310.

8.    Husmann L. et al. Feasibility of low-dose coronary CT angiography. First experience with prospective ECGgating. Eur. Heart. J. 2008; 29:191–197.

9.    Herzog B.A. et al. Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram triggering. First clinical experience. Eur. Heart. J. 2008; 29: 3037–3042.

10.  Husmann L. et al. Diagnostic accuracy of computed tomography coronary angiography and evaluation of stress-only single-photon emission computed tomography / computed tomography hybrid imaging. Сomparison of prospective electrocardiogram-triggering vs. retrospective gating. Eur. Heart. J. 2009; 30:600–607.

11.  Hsieh J. et al. Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med. Phys. 2006; 33:4236–4248.

12.  Earls J.P. et al. Prospectively gated trans-verse coronary CT angiography versus retrospectively gated helical technique. Improved image quality and reduced radiation dose. Radiology. 2008; 246: 742–753.

13.  Shuman W.P. et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries.

 

Abstract:

Background: according to the international registry ICOPER, right ventricular (RV) dysfunction is the most significant predictor of mortality in patients with pulmonary embolism (PE). Diagnosis of PE should include not only verification of thrombus in branches of pulmonary arteries, but also estimation of RV contractile function.

Aim: was to identify the most informative indicators of Gated Blood Pool SPECT (GBPS) for estimation of RV function in patients with PE.

Methods: 52 patients were included in the study Main group (n=37) included patients with PE; comparison group (n=15) included patients suffering from coronary heart disease (NYHA I-II). All patients received ventilation-perfusion lung scintigraphy, gated blood pool single photon emission computer tomography (GBPS), and estimation of plasma levels of endothelin-1, stable nitric oxide (NO) metabolites, and 6-keto-PG F1a.

Results: in patients with PE, RV end-systolic volume, stroke volume, ejection fraction, peak ejection rate, peak filling rate, and mean filling rate were significantly lower in comparison with patients without PE. In patients with PE volume from 3 to 7 bronchopulmonary segments, we have not found any correlations between PE volume and functional status of the right ventricle. In patients with PE, levels of endothelin-1, 6-keto-PG F1a, and stable NO metabolites were increased in comparison with patients without PE.

Conclusion: GBPS allows to verify RV dysfunction in patients without massive PE and severe pulmonary hypertension. Dissociation between volume of PE and the degree of RV dysfunction may be caused by humoral vasoactive factors disbalance. 

 

Reference

1.     Torbicki A., Perrier A., Konstantinides S., et al. ESC Committee for Practice Guidelines (CPG). Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur. Heart J. 2008; 29 (18): 2276-2315.

2.     Anderson F.A. Jr., Spencer F.A. Risk factors for venous thromboembolism. Circulation. 2003; 107: 9-16.

3.     Heit J.A. The epidemiology of venous thromboembolism in the community: implications for prevention and management. J. Thromb Thrombolysis. 2006; 21: 23-29.

4.     White R.H. The Epidemiology of Venous Thromboembolism. Circulation. 2003; 107: 1-4.

5.     Golghaber S.Z. Echocardiography in the Management of Pulmonary Embolysm. Ann. Intern. Med. 2002; 136 (99): 691-700.

6.     Haddad F., Hunt S.A., Rosenthal D.N. et al. Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008; 117 (11): 1436-48.

7.     MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease: part one. Am. J. Respi. Crit. Care Med. 1994; 150: 833-852.

8.     Zavadovskij K.V., Pan'kova A.N., Krivonogov N.G. i dr. Radionuklidnaja diagnostika trombojembolii legochnoj arterii: vizualizacii perfuzii i ventiljacii legkih, ocenka sokratimosti pravogo zheludochka [Radionuclide diagnosis of pulmonary embolism: perfusion and ventilation, assessment of right ventricular contractility]. Sibirskij medicinskij zhurnal. 2011; 26(2), vypusk 1:14-21 [In Russ].

9.     Petri A., Sjebin K. Nagljadnaja statistika v medicine. Per. s angl. V.P. Leonova. M.: GJeOTAR-MED. 2003; 144 s.: il. (Serija «Jekzamen na otlichno») [In Russ].

10.   Mansencal N., Joseph T., Vieillard-Baron A., et al. Diagnosis of right ventricular dysfunction in acute pulmonary embolism using helical computed tomography. Am. J. Cardiol. 2005; 95 (10): 1260-1263.

11.   Contractor S., Maldjian P.D., Sharma V.K. Role of helical CT in detecting right ventricular dysfunction secondary to acute pulmonary embolism. J. Comput. Assist. Tomogr. 2002;

authors: 

 

Abstract:

Good response to neoadjuvant chemotherapy is a favorable prognostic factor in patients with breast cancer. Early response evaluation might spare unnecessary chemotherapy in bad responders. Clinically mammography and ultrasound are used to evaluate response to treatment while being bac predictors of early response. MRI is getting wider acceptance but still lacks necessary accuracy to the absence of functional evaluation. Thus novel methods are being evaluated in early response prediction. Diffusion-weighted MRI, MR-spectroscopy, mammoscintigraphy PET as well as diffusion optic tomography are discussed in the review as potential ways to improve early prediction of response in breast cancer patients undergoing neoadjuvant chemotherapy.

 

References

1.     Davydov M.I., Aksel' E.M. Statistika zlokachestvennyh novoobrazovanij v Rossii i stranah SNG v 2012 g [Statistics of malignancies in Russian Federation and the CIS countries in 2012.]. Moskva, 2014;63-64 [In Russ].

2.     Montagna E., Bagnardi V., Rotmensz N. Pathological complete response after preoperative systemic therapy and outcome: relevance of clinical and biologic baseline features. Breast Cancer Res Treat. 2010;124(3):689-99.

3.     Bonnefoi H., Litiere S., Piccart M. Pathological complete response after neoadjuvant chemotherapy is an independent predictive factor irrespective of simplified breast cancer intrinsic subtypes: a landmark and two-step approach analyses from the EORTC 10994/BIG 1-00 phase III trial. Ann Oncol. 2014 Jun;25(6):1128-36.

4.     Semiglazov V.F., Paltuev R.M., Semiglazova TJu. i dr. Klinicheskie rekomendacii po diagnostike i lecheniju raka molochnoj zhelezy [Clinical guidelines for the diagnosis and treatment of breast cancer.]. SPb.: ABS-press. 2013; 234 [In Russ].

5.     Schmitt E.L., Threatt B.A. Effective breast cancer detection with filmscreen mammography. Canad. Ass. Radiol. 1985;36(4):303-307.

6.     Mistry K.A., Thakur M.H., Kembhavi S.A. The effect of chemotherapy on the mammographic appearance of breast cancer and correlation with histopathology. Brit. J. Radiol. 2016; 89:1057-1063.

7.     Helvie M.A., Joynt L.K., Cody R.L. et al. Locally advanced breast carcinoma: accuracy of mammography versus clinical examination in the prediction of residual disease after chemotherapy. Radiology. 1996;198:327-332.

8.    Komjahov A.V.. Ocenka jeffektivnosti neoad’juvantnoj sistemnoj terapii raka molochnoj zhelezy s pomoshhju magnitno-rezonansnoj tomografii i sonografii [Evaluation of the effectiveness of neoadjuvant systemic therapy for breast cancer using magnetic resonance imaging and sonography.]. Avtoreferat. Diss. kand. med. nauk SPb. 2016; 13-15 [In Russ].

9.    Gazhonova V.E., Efremova M.P., Dorohova E.A. Sovremennye metody neinvazivnoj luchevoj diagnostiki raka molochnoj zhelezy [Modern non-invasive methods of radiation diagnosis of breast cancer.]. RMZh. 2016;5:321-324 [In Russ].

10.  Meladze N.V., Ternovoj S.K., Abduraimov A.B. MR-spektroskopija v differencial'noj diagnostike uzlovyh obrazovanij molochnyh zhelez[MR spectroscopy in the differential diagnosis of nodular breast cancer.]. Bjulleten’ sibirskoj mediciny. 2012;5:78-79 [ In Russ].

11.   Semiglazov V.F., Semiglazov V.V., Krivorot'ko P.V. i dr. Rukovodstvo po lecheniju rannego raka molochnoj zhelezy [Guidelines for early breast cancer therapy.]. SPb. 2016; 12-13 [In Russ].

12.   Marinovich M.L., Macaskill P., Irwig L. et al. Metaanalysis of agreement between MRI and pathologic breast tumour size after neoadjuvant chemotherapy. Br. J. Cancer. 2013;109:1528-1536.

13.   Meladze N.V. Rol' Mr-spektroskopii v kompleksnoj diagnostiki raka molochnoj zhelezy [MR spectroscopy in the complex diagnosis of breast cancer]. Avtoreferat. Diss. kand. med. nauk. M. 2014;78-79 [In Russ].

14.   Danishad K.K., Sharma U., Sah R.G., et al. Assessment of therapeutic response of locally advanced breast cancer (LABC) patients undergoing neoadjuvant chemotherapy (NACT) monitored using sequential magnetic resonance spectroscopic imaging. NMR Biomed. 2010;23(3):233-41.

15.   Jonathan K.P, Begley L., Thomas W. In vivo proton magnetic resonance spectroscopy of breast cancer: a review of the literature. Breast Cancer Research. 2012; 14:207.

16.   Bammer R. Basic principles of diffusion-weighted imaging. Eur Radiol. 2003;45:169-184.

17.   Kwee T., Takahara T., Ochiai R. et al. Whole-body diffusion weighted magnetic resonance imaging. Eur Radiol. 2009;70: 409-417.

18.   Smirnova N.A., Nazarov A.A., Del'gadil'o-Kuznecov L.Je. Radionuklidnye metody v diagnostike i lechenii raka molochnoj zhelezy [Radionuclide methods in the diagnosis and treatment of breast cancer.]. Vestnik RUDN. 2005;(29)1: 45-50 [In Russ].

19.  Brjanceva Zh.V. Avtoreferat. Diss. kand. med. nauk. Rolmammoscintigrafii v ocenke jeffektivnosti neoadjuvantnogo lechenija raka molochnoj zhelezy [Mammoscintigraphy role in assessing the effectiveness of neoadjuvant treatment of breast cancer.]. SPb. 2015;3-4 [In Russ].

20.   Qiufang Liu, Chen Wang, Panli Li. The Role of 18F- FDG PET/CT and MRI in Assessing Pathological Complete Response to Neoadjuvant Chemotherapy in Patients with Breast Cancer: A Systematic Review and Meta-Analysis. Biomed Res Int. 2016;2016:10.

21.   Tromberg B.J., Zhang Z., Leproux A. Predicting Responses to Neoadjuvant Chemotherapy in Breast Cancer: ACRIN 6691 Trial of Diffuse Optical Spectroscopic Imaging. Сancer Research. 2016;5933.

22.   Baek H.M., Chen J.H, Nie K. Predicting Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer by Using MR Imaging and Quantitative 1H MR Spectroscopy. Radiology. 2009 Jun; 251(3):653-662.

23.   Bufi E., Belli P, Matteo M. Hypervascularity Predicts Complete Pathologic Response to Chemotherapy and Late Outcomes in Breast Cancer. Clinical Breast Cancer. 2016; Jun 23. pii: S1526-8209(16)30162-8.

24.   Hylton N.M., Constantine A., Gatsonis M. Neoadjuvant Chemotherapy for Breast Cancer: Functional Tumor Volume by MR Imaging Predicts Recurrence-free Survival-Results from the ACRIN 6657/CALGB 150007 I-SPY 1 TRIAL. Radiology. 2016; Apr; 279(1):44-55.

25.   Schaefgen B., Mati M., Sinn H. Can Routine Imaging After Neoadjuvant Chemotherapy in Breast Cancer Predict Pathologic Complete Response? Annals of Surgical Oncology. 2016;23(3):789-795.

26.   Cho N., Im S.A., Kang K.W. Early prediction of response to neoadjuvant chemotherapy in breast cancer patients: comparison of single-voxel (1)H-magnetic resonance spectroscopy and (18)F-fluorodeoxyglucose positron emission tomography. Eur Radiol. 2016; 26(7):2279-90.

27.   Bufi E., Belli P., Costantini M. Role of the Apparent Diffusion Coefficient in the Prediction of Response to Neoadjuvant Chemotherapy in Patients With Locally Advanced Breast Cancer. Clin Breast Cancer. 2015 0ct;15(5):370-80.

28.   Leong K.M., Lau P., Ramadan S. Utilisation of MR spectroscopy and diffusion weighted imaging in predicting and monitoring of breast cancer response to chemotherapy. J Med Imaging Radiat Oncol. 2015 Jun;59(3):268-77.

29.   Novikov S.N., Kanaev S.V., Petr K.V. Technetium-99m methoxyisobutylisonitrile scintimammography for monitoring and early prediction of breast cancer response to neoadjuvant chemotherapy. Nucl Med Commun. 2015 Aug; 36(8):795-801.

30.   Trehan R., Seam R.K., Gupta M.K. Role of scintimammography in assessing the response of neoadjuvant chemotherapy in locally advanced breast cancer. World J Nucl Med. 2014 Sep;13(3):163-9.

31.   Schaafsma B.E., van de Giessen M., Charehbili A. Optical mammography using diffuse optical spectroscopy for monitoring tumor response to neoadjuvant chemotherapy in women with locally advanced breast cancer. Clin Cancer Res. 2015 Feb; 21(3):5

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы