Website is intended for physicians
Search:
Всего найдено: 11

authors: 

 

Abstract:

Aim: was to develop a score scale for the prediction of complete tumor necrosis to assess the potential effectiveness of radiofrequency ablation of colorectal cancer focals in liver, on the base of results of the use of radiological diagnostic methods.

Materials and methods: a comparative analysis of results of radiological diagnosis of solitary colorectal cancer metastases in liver was carried out in 51 patients, depending on their characteristics before and at different times after radiofrequency ablation (RFA).

The survey and interventions were carried out between 2014 and 2020 in accordance with standards of treatment approved in Belarus. Ultrasound and CT with bolus contrast enhancement were used as radiation diagnostic methods.

The initial morphological parameters of tumor focals were evaluated according to results of ultrasound examination. CT with bolus contrast was used to control the effectiveness of RFA (determining the frequency of complete tumor necrosis): on the day of discharge of patients from the hospital, after 1 month, and then - once every 3 months (quarterly) during the year.

Results: the dependence of the effectiveness of RFA (frequency of complete tumor necrosis) on initial characteristics of solitary focals of colorectal cancer in liver was revealed and confirmed by results of a comparative statistical analysis. On the basis of obtained data, a score scale for predicting the effectiveness of RFA was developed and validated. The sensitivity of the new technique was 80,0%; specificity - 82,9%.

Conclusion: for the first time, a scale for the prediction of complete tumor necrosis was developed to assess the potential effectiveness of radiofrequency ablation of solitary colorectal cancer focals in liver.

ROC-analysis of the scale validation results showed that the sensitivity and specificity of the model are sufficient for its application in practice: 80,0% and 82,93%, respectively.

 

References

1.     Hideo T, Eren B. Role of thermal ablation in the management of colorectal liver metastasis. Hepatobiliary Surg. Nutr. 2020; 9(1): 49-58.

https://doi.org/10.21037/hbsn.2019.06.08

2.     Machi J, Oishi AJ, Nancy LF, Robert HO. Sonographically guided radio frequency thermal ablation for unresectable recurrent tumors in the retroperitoneum and the pelvis. J. Ultrasound. Med. 2003; 22(5): 507-13.

https://doi.org/10.7863/jum.2003.22.5.507

3.     Furrukh J, Cameron S, Iswanto S. The use of thermal ablation in the treatment of colorectal liver metastasis-proper selection and application of technology. Hepatobiliary Surg. Nutr. 2021; 10(2): 279-280.

https://doi.org/10.21037/hbsn-21-54

4.     Vasiniotis KN, Kaye EA, Sofocleous CT. Image-Guided Thermal Ablation for Colorectal Liver Metastases. Tech. Vasc. Interv. Radiol. 2020; 23(2): 100672.

https://doi.org/10.1016/j.tvir.2020.100672

5.     Rafael D-N, Stephen F, Hassan M, Graeme P. Defining the Optimal Use of Ablation for Metastatic Colorectal Cancer to the Liver Without High-Level Evidence. Curr. Treat. Options. Oncol. 2017; 18(2): 8.

https://doi.org/10.1007/s11864-017-0452-6

6.     Мурашко К.Л., Сорокин В.Г., Громов Д.Г. Методы локального воздействия на очаговые образования печени, применяемые в онкорадиологии. Диагностическая и интервенционная радиология. 2020;14: 60-66.

Murashko KL, Sorokin VG, Gromov DG. Metody lokal'nogo vozdejstviya na ochagovye obrazovaniya pecheni, primenyaemye v onkoradiologii. Diagnosticheskaya i intervencionnaya radiologiya. 2020; 14: 60-66 [In Russ].

https://doi.org/10.25512/DIR.2020.14.2.07

7.     Binbin J, Hongjie L, Kun Y, Zhongyi Z. Ten-Year Outcomes of Percutaneous Radiofrequency Ablation for Colorectal Cancer Liver Metastases in Perivascular vs. Non-Perivascular Locations: A Propensity-Score Matched Study. Front. Oncol. 2020; 16(10): 553556.

https://doi.org/10.3389/fonc.2020.553556

8.     Lu DSK, Steven SR, Limanond P, et al. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J. Vasc. Interv. Radiol. 2003; 14(10): 1267-74.

https://doi.org/10.1097/01.rvi.0000092666.72261.6b

9.     Lu DS, et al. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: Assessment of the “heat sink” effect. Am. J. Roentgenol. 2002; 178: 47-51.

https://doi.org/10.2214/ajr.178.1.1780047

10.   You L, Hui H, Ziwei W, et al. Evaluation of models for predicting the probability of malignancy in patients with pulmonary nodules. Biosci. Rep. 2020; 28; 40(2): BSR20193875.

https://doi.org/10.1042/BSR20193875

11.   Wang QQ, Yu SC, Qi X, et al. Overview of logistic regression model analysis and application. Zhonghua Yu. Fang. Yi. Xue. Za. Zhi. 2019; 6; 53(9): 955-960.

https://doi.org/10.3760/cma.j.issn.0253-9624.2019.09.018

12.   Adina NK, Trevor C, Ruwanthi K-D. Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Med. Res. Methodol. 2017; 17(1): 53.

https://doi.org/10.1186/s12874-017-0332-6

13.   Nakas CT, Reiser B. Editorial for the special issue of “Statistical Methods in Medical Research” on “Advanced ROC analysis”. Statistical Methods in Medical Research. 2018; 27(3): 649-650.

https://doi.org/10.1177/0962280217742536

14.   Xieling C, Haoran X, Fu L, et al. A bibliometric analysis of natural language processing in medical research. BMC Med. Inform. Decis. Mak. 2018; 18(1): 14.

https://doi.org/10.1186/s12911-018-0594-x

15.   Young C, Soung WJ, Jae YJ, Yong JK. Recent Updates of Transarterial Chemoembolilzation in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020; 31; 21(21): 8165.

https://doi.org/10.3390/ijms21218165

16.   Riccardo L. Loco-regional treatment of hepatocellular carcinoma. Hepatology. 2010; 52(2): 762-73.

https://doi.org/10.1002/hep.23725

17.   Hinshaw JL, Lubner MG, Ziemlewicz TJ, et al. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation - what should you use and why? Radiographics. 2014; 34(5): 1344-62.

https://doi.org/10.1148/rg.345140054

18.   Pierre A, Roberto LC, Guillaume K, et al. Percutaneous tumor ablation. Presse. Med. 2019; 48(10): 1146-1155.

https://doi.org/10.1016/j.lpm.2019.10.011

19.   Fan Z, Hongying S, Xiangjun H, et al. Tumor Thermal Ablation Enhancement by Micromaterials. Curr. Drug. Deliv. 2017; 14(3): 323-333.

https://doi.org/10.2174/1567201813666160108114208

20.   Mehta A, Oklu R, Sheth RA. Thermal Ablative Therapies and Immune Checkpoint Modulation: Can Locoregional Approaches Effect a Systemic Response? Gastroenterol. Res. Pract. 2016; 9251375.

https://doi.org/10.1155/2016/9251375

 

Abstract:

Aim: was to systematize and clarify possible puncture approaches in percutaneous CT-guided mini-invasive procedures in patients with tumor lesions of pelvic bones.

Methods and materials: 63 CT-guided interventions were performed on pelvic bones (53 trephine biopsy and 10 cryoablations) in 52 patients. Manipulations were performed using the Philips Ingenuity CT scanner, Maxio Perfint robotic system and «Medical Cryotherapeutic System».

Results: during interventional procedures, three topographic regions were identified - zones of the pelvic ring: upper zone (at the level of the ilium), middle zone (level of the articular space of the hip joint), and lower zone (at the level of the ramus of the ischial and pubic bones). In each zone, within certain safety sectors, puncture approaches are highlighted, associated with five optimal positions of the patient in the gantry aperture. Clinical examples of puncture procedures with various localization of the pathological process are given, demonstrating the safety of approaches and the validity of proposed recommendations. There were no complications after interventions.

Conclusion: the choice of the optimal puncture approach and standard patient’ positions in miniinvasive CT-guided operations in patients with pelvic bone lesions can improve the efficiency and safety of surgical procedures.

  

 

References 

1.     Garnon J, Koch G, Caudrelier J, et al. Expanding the borders: Image-guided procedures for the treatment of musculoskeletal tumors. Diagnostic and Interventional Imaging. 2017; 98(9): 635-644.

2.     Sun G, Jin P, Liu XW, et al. Cementoplasty for managing painful bone metastases outside the spine. European Radiology. 2014; 24(3): 731-737.

3.     Burovik IA, Prokhorov GG, Lushina PA, et al. CT-guided robotic-assisted percutaneous interventions: first experience. Medical Visualization. 2019; (2): 27-35 [In Russ].

4.     Lin YC, Wu JS, Kung JW. Image guided biopsy of musculoskeletal lesions with low diagnostic yield. Current Medical Imaging Reviews. 2017; 13(3): 260-267.

5.     Miranda OM, Moser TP. A practical guide for planning pelvic bone percutaneous interventions (biopsy, tumour ablation and cementoplasty). Insights into Imaging. 2018; 9: 275-285.

6.     Coleman RE, Croucher PI, Padhani AR, et al. Bone metastases. Nature Reviews Disease Primers. 2020; 6: 83.

7.     Filippiadis DK, Charalampopoulos G, Mazioti A, et al. Bone and Soft-Tissue Biopsies: What You Need to Know. Seminars in Interventional Radiology. 2018; 35(4): 215-220.

8.     Veltri A, Bargellini I, Giorgi L, et al. CIRSE guidelines on percutaneous needle biopsy (PNB). CardioVascular and Interventional Radiology. 2017; 40(10): 1501-1513.

9.     Meagan C, Keegan BA, Darcy AK. Fine-needle aspiration biopsy for the diagnosis of bone and soft tissue lesions: a systematic review and meta-analysis. Journal of the American Society of Cytopathology. 2020; 9(5): 429-441.

10.   Barrientos-Ruiz I, Ortiz-Cruz EJ, Serrano-Montilla J, et al. Are Biopsy Tracts a Concern for Seeding and Local Recurrence in Sarcomas? Clinical Orthopaedics and Related Research. 2017; 475(2): 511-518.

11.   Burovik IA, Prokhorov GG. Computed tomography as a method of control of percutaneous tumor cryoablation. Diagnostic radiology and radiotherapy. 2019; (4): 57-65 [In Russ].

 

Abstract:

Introduction: left atrial (LA) volumes measured during different phases of the cardiac cycle can be used for the evaluation of the LA functional properties before and after catheter ablation (CA). Increase of LA ejection fraction (EF) supposed to be early and more sensitive marker of LA reverse remodeling process, than LA volume and can be important for assessing the effectiveness of CA.

Aim: was to estimate volumetric parameters and function of LV before and after cryo- and radiofrequency catheter ablation of pulmonary veins in patients with paroxysmal atrial fibrillation.

Materials and methods: 21 patients with paroxysmal atrial fibrillation (AF) were included in study. All patients underwent multidetector computed tomography (MDCT) of pulmonary veins (PV) and LA before CA and 12±2 months after CA. 3-dimensional images at phases 0%, 40%, 75% of the cardiac cycle were used to assess LA functional properties.

Results: LA maximal volume before CA was increased insignificantly in patients with AF recurrence (124,52±38,22 ml vs. 117,89±23,94 ml, p>0,05). In patients without recurrence after CA, LA volumes decreased slightly (LA max 115,31±20,13 ml, p>0,05, LA min 73,43±14,91 ml, p>0,05), while in patients with recurrence increased (LA max 130,88±25,20 ml, p<0,05, LA min to 94,92±31,75 ml, p<0,05). Global LA ejection fraction was less in patients without recurrence before CA (22,37%±4,69 vs. 31,31%±9,89, p=0,013), but increased significantly after CA, while in patients with recurrence global LA EF was without relevant changes (36,54%±3,27 vs. 28,89%±9,41, p=0,011).

Conclusion: improved left atrial mechanical function was demonstrated in patients without any recurrence after ablation. The anatomic and functional reverse remodeling was not significant in patients with atrial fibrillation recurrence.

  

 

References

1.     Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int J Stroke. 2021; 16(2): 217-221.

https://doi.org/10.1177/1747493019897870

2.     Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021; 42(5): 373-498.

https://doi.org/10.1093/eurheartj/ehaa612

3.     Hindricks G, Sepehri Shamloo A, Lenarczyk R, et al. Catheter ablation of atrial fibrillation: current status, techniques, outcomes and challenges. Kardiol Pol. 2018; 76(12): 1680-1686.

https://doi.org/10.5603/KP.a2018.0216

4.     Artjuhina EA, Revishvili ASh. New technologies in the treatment of cardiac arrhythmias. Vysokotehnologichnaja medicina. 2017; 1: 7-15 [In Russ].

5.     Darby AE. Recurrent Atrial Fibrillation After Catheter Ablation: Considerations For Repeat Ablation And Strategies To Optimize Success. J Atr Fibrillation. 2016; 9(1): 1427.

https://doi.org/10.4022/jafib.1427

6.     Murray MI, Arnold A, Younis M, et al. Cryoballoon versus radiofrequency ablation for paroxysmal atrial fibrillation: a meta-analysis of randomized controlled trials. Clin Res Cardiol. 2018; 107(8): 658-669.

https://doi.org/10.1007/s00392-018-1232-4

7.     Kuck KH, Brugada J, F?rnkranz A, et al. Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation. N Engl J Med. 2016; 374(23): 2235-2245.

https://doi.org/10.1056/NEJMoa1602014

8.     Mathew ST, Patel J, Joseph S, et al. Atrial fibrillation: mechanistic insights and treatment options. Eur J Intern Med. 2009; 20(7): 672-81.

https://doi.org/10.1016/j.ejim.2009.07.011

9.     Vasamreddy CR, Lickfett L, Jayam VK, et al. Predictors of recurrence following catheter ablation of atrial fibrillation using an irrigated-tip ablation catheter. J Cardiovasc Electrophysiol. 2004; 15(6): 692-697.

https://doi.org/10.1046/j.1540-8167.2004.03538.x

10.   Tops LF, Bax JJ, Zeppenfeld K, et al. Effect of radiofrequency catheter ablation for atrial fibrillation on left atrial cavity size. Am J Cardiol. 2006; 97(8): 1220-1222.

https://doi.org/10.1016/j.amjcard.2005.11.043

11.   Tsao HM, Hu WC, Wu MH, et al. The impact of catheter ablation on the dynamic function of the left atrium in patients with atrial fibrillation: insights from four-dimensional computed tomographic images. J Cardiovasc Electrophysiol. 2010; 21(3): 270-277.

https://doi.org/10.1111/j.1540-8167.2009.01618.x

12.   Abhayaratna WP, Seward JB, Appleton CP, et al. Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol. 2006; 47(12): 2357-2363.

https://doi.org/10.1016/j.jacc.2006.02.048

13.   Hoit BD. Left atrial size and function: role in prognosis. J Am Coll Cardiol. 2014; 63(6): 493-505.

https://doi.org/10.1016/j.jacc.2013.10.055

14.   Costa FM, Ferreira AM, Oliveira S, et al. Left atrial volume is more important than the type of atrial fibrillation in predicting the long-term success of catheter ablation. Int J Cardiol. 2015; 184: 56-61.

https://doi.org/10.1016/j.ijcard.2015.01.060

15.   Avelar E, Durst R, Rosito GA, et al. Comparison of the accuracy of multidetector computed tomography versus two-dimensional echocardiography to measureleft atrial volume. Am J Cardiol. 2010; 106(1): 104-109.

https://doi.org/10.1016/j.amjcard.2010.02.021

16.   K?hl JT, L?nborg J, Fuchs A, et al. Assessment of left atrial volume and function: a comparative study between echocardiography, magnetic resonance imaging and multi slice computed tomography. Int J Cardiovasc Imaging. 2012; 28(5): 1061-1071.

https://doi.org/10.1007/s10554-011-9930-2

17.   Hof I, Chilukuri K, Arbab-Zadeh A, et al. Does left atrial volume and pulmonary venous anatomy predict the outcome of catheter ablation of atrial fibrillation? J Cardiovasc Electrophysiol. 2009; 20(9): 1005-1010.

https://doi.org/10.1111/j.1540-8167.2009.01504.x

18.   Abecasis J, Dourado R, Ferreira A, et al. Left atrial volume calculated by multi-detector computed tomography may predict successful pulmonary vein isolation in catheter ablation of atrial fibrillation. Europace. 2009; 11(10): 1289-1294.

https://doi.org/10.1093/europace/eup198

19.   Amin V, Finkel J, Halpern E, et al. Impact of left atrial volume on outcomes of pulmonary vein isolation in patients with non-paroxysmal (persistent) and paroxysmal atrial fibrillation. Am J Cardiol. 2013; 112(7): 966-970.

https://doi.org/10.1016/j.amjcard.2013.05.034

20.   Lemola K, Sneider M, Desjardins B, et al. Effects of left atrial ablation of atrial fibrillation on size of the left atrium and pulmonary veins. Heart Rhythm. 2004; 1(5): 576-581.

https://doi.org/10.1016/j.hrthm.2004.07.020

21.   Park MJ, Jung JI, Oh YS, et al. Assessment of the structural remodeling of the left atrium by 64-multislice cardiac CT: comparative studies in controls and patients with atrial fibrillation. Int J Cardiol. 2012; 159(3): 181-186.

https://doi.org/10.1016/j.ijcard.2011.02.053

22.   Lemola K, Desjardins B, Sneider M, et al. Effect of left atrial circumferential ablation for atrial fibrillation on left atrial transport function. Heart Rhythm. 2005; 2(9): 923-928.

https://doi.org/10.1016/j.hrthm.2005.06.026

23.   Perea RJ, Tamborero D, Mont L, et al. Left atrial contractility is preserved after successful circumferential pulmonary vein ablation in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2008; 19(4): 374-379.

https://doi.org/10.1111/j.1540-8167.2007.01086.x 

 

Abstract:

Aim: was to analyze domestic and foreign literature sources, reflecting the possibility of applying local ablation methods of focal liver tumors.

Material and methods: article presents an analysis of domestic and foreign 37 publications containing information on the use of methods of local ablation of nodular pathology of liver, deposited in resources of PubMed and information portal eLIBRARY.RU.

Results: most important aspects of performing of methods of chemical, cryo-, microwave, and radiofrequency ablations, used in treatment of local liver tumors were presented.

Conclusion: analysis of various publications on methods of local destruction of tumors does not give a clear answer to the question of which method is preferred, however, article describes each of ablation methods, highlighting positive and negative aspects of their effect on lesions of the liver. The question of the inclusion of minimally invasive methods in schemes of combined and complex antitumor therapy for focal liver lesions also remains open.

Modern approaches and improving techniques of treatment of liver malignancies, expand indications for the use of minimally invasive techniques. Competent selection of patients, selection of the optimal method of local ablation of tumor and subsequent dynamic monitoring of patients reduce the number of relapses, increase the percentage of overall survival of patients and improve their quality of life.

  

References

1.     Truty MJ, Vauthey J-N. Surgical resection of highrisk hepatocellular carcinoma: patient selection, preoperative considerations, and operative technique. Ann. Surg. Oncol. 2010; 17: 1219-1225.

2.     Gillams AR. Radiofrequency ablation in the management of liver tumors. Eur. J. Surg. Oncol. 2003; 29(1): 9-16.

3.     Patjutko JuI, Chuchuev ES, Podluzhnyj DV, et al. Surgical tactics in treatment of colorectal cancer patients with synchronous liver metastases. Onkologicheskaja koloproktologija. 2011; 2: 13-19. [In Russ].

4.     Liu LX, Zhang WH, Jiang HC. Current treatment for liver metastases from colorectal cancer. World J. Gastroenterol. 2003; 9: 193-200.

5.     Patjutko JuI, Sagajdak IV. Indications and contraindications for liver resections in case of metastases of colorectal cancer. The value of prognostic factors and their classification. Ann. Hir. Gepatol. 2003; 8(1): 110-118 [In Russ].

6.     Granov DA, Tarazov PG. Endovascular interventions in treatment of malignant tumors of the liver. SPb. Foliant. 2002; 287 [In Russ].

7.     Verjasova NN. Treatment of malignant tumors of the liver with the use of local injection therapy with ethanol. CNIIRI. SPb. Avtoreferat. 2002; 6-8 [In Russ].

8.     Sugiura Y, Nakamura S, Iida S, et. al. Extensive resection of the bile ducts combined with liver resection for cancer of the main hepatic duct junction: A cooperative study of the Keio Bile Duct Cancer Study Group. Surgery. 1994; 15(4): 445-451.

9.     Elgindy N, Lindholm H, Gunvйn P. High dose percutaneous ethanol injection therapy of liver tumors: patient acceptance and complications. Acta Radiologica. 2000; (5): 458-463.

10.   Shaposhnikov AV, Bordshkov JuN, Nepomnjashhaja EM, at al. Local therapy of unresectable liver tumors. Ann. Hir. Gepatol. 2004; 9(1): 89-94 [In Russ].

11.   Siperstein AE, Berber E. Cryoablation, Percutaneous Alcohol Injection, and Radiofrequency Ablation for Treatment of Neuroendocrine Liver Metastases. World. J. Surg. 2001; (25): 693-696.

12.   Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer. 2014; 3: 199-208.

13.   Adam R, Akpinar E, Johann M, et al. Place of cryosurgery in the treatment of malignant liver tumors. Ann Surg. 1997; 225: 239–250.

14.   Mala T. Cryoablation of colorectal liver metastases: minimally invasive tumor control. Scand. J. Gastroenter. 2004; 39: 571-578.

15.   Samojlov VA, Saljukov JuL, Gladenko AA, et al. Experience in the use of cryodestruction in treatment of metastatic liver cancer. Ann. Hir. Gepatol. 1998; 3: 326 [In Russ].

16.   Seifert JK, Junginger T, Morris DL. A collective review of the world literature on hepatic cryotherapy. J.R. Coll. Surg. Edinb. 1998; 43: 141-154.

17.   Erinjeri JP, Clark TW. Cryoablation: mechanism of action and devices. J Vasc Interv Radiol. 2010; 21: 187-191.

18.   Ahmed M, Brace CL, Lee FT, at al. Principles of and advances in percutaneous ablation. Radiology. 2011; 258(2): 351-369.

19.   Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer. 2014; 14(3): 199-208.

20.   Starkov JuG, Shishin KV. Cryosurgery of focal liver lesions. Hirurgija. 2000; 7: 53-59 [In Russ].

21.   Hinshaw JL, Lubner MG, Ziemlewicz TJ, et al. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation – what should you use and why? Radiographics. 2014; 34(5): 1344-1362.

22.   Ravikumar TS, Kane R, Cady B, et al. A 5-year study of cryosurgeryin the treatment of liver tumors. Arc. Hir. Surg. 1991; 125: 1520-1524.

23.   Crews KA, Kuhn JA, McCarty TM, et al. Cryosurgical ablation of hepatic tumors. Am. J. Surg. 1997; 174: 614-617.

24.   Lubner MG, Brace CL, Hinshaw JL et al. Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 2010; 21: 192-203.

25.   Lencioni R, de Baere T, Martin RC, at al. Imageguided ablation of malignant liver tumors: recommendations for clinical validation of novel thermal and non-thermal technologies - a western perspective. Liver Cancer. 2015; (4): 208–214.

26.   Mayo SC, Pawlik TM. Thermal ablative therapies for secondary hepatic malignancies. Cancer J. 2010; 16 (2): 111-117.

27.   Scudamore CH, Patterson EJ, Shapiro AM, et al. Liver tumor ablation techniques. J. Invest. Surg. 1997; 4: 157-64.

28.   Brace C. Thermal tumor ablation in clinical use. IEEE Pulse. 2011; (5):28-38.

29.   Iannitti DA, Martin RC, Simon CJ, et al. Hepatic tumor ablation with clustered microwave antennae. The US Phase II trial. HPB (Oxford). 2007; 9(2): 120.

30.   Rossi S, Carbagnati P, Rosa L, et al. Laparoscopic radio frequency thermal ablation for treatment of hepatocelluar carcinoma. Int. J. Clin. Oncol. 2002; 225-235.

31.   Zivin SP, Gaba RC. Technical and practical considerations for device selection in locoregional ablative therapy. Semin. Intervent. Radiol. 2014: 31(2): 212-24.

32.   Mehta A, Oklu R, Sheth RA. Thermal ablative therapies and immune checkpoint modulation: can locoregional approaches effect a systemic response? Gastroenterology Research and Practice. 2016; 9251375: 11.

33.   Sidana A. Cancer immunotherapy using tumor cryoablation. Immunotherapy. 2014; 6(1): 85-93.

34.   Dolgushin BI, Patjutko JuI, Sholohov VN, et al. Radiofrequency thermal ablation of liver tumors. Edited by MI Davydov. Prakticheskaja medicina. 2007; 192 [In Russ].

35.   Fedorov VD, Vishnevskij VA, Kornjak BS, at al. Radiofrequency ablation of malignant tumors of the liver (literature review). Hirurgija. 2003; 10: 77-80 [In Russ].

36.   Machi J, Oishi AJ, Mossing AJ, Furumoto NL, Oishi RH. Hand-assisted laparoscopic ultrasound-guided radiofrequency thermal ablation of liver tumors: a technical report. Surg Laparosc Endosc Percutan Tech. 2002; 12:160–164.

37.   Gilliams AR, Lees WR. CT mapping of the distribution of saline during radiofrequency ablation with perfusion electrodes. Cardiovasc Intervent Radiol. 2005; 476-480.

 

Abstract:

Background. Significant coronary artery disease (CAD), occurring in 7-10% of patients with obstructive hypertrophic cardiomyopathy (HCM), deteriorates the clinical course and survival rates. Until recently, such combination of abnormalities was an indication for coronary artery bypass graft (CABG) and septal myoseptecmy

Aim: was to investigate the efficacy, safety and technique of combined percutaneous intervention in patients with obstructive HCM and CAD. Materials and methods. We have performed 15 combined percutaneous interventions: alcohol septal ablation (ASA) and coronary revascularization. All patients had a marked asymmetric hypertrophy of LV with outflow tract obstruction at rest, as well as severe coronary lesions (75% - 95%). During the procedure, we performed consistently ASA of target zone in charge of obstruction and coronary stenting (10 stents in LAD, 8 stents in RCA, 4 stents in LCX).

Results. Among the effects of interventions were disappearance of angina pectoris and dyspnea, reduction of the pressure gradient in the LV outflow tract and a significant decrease in the thickness of septum. No serious complications (such as MI, complete av-block, ventricular tachiarrhythmias) occured

Conclusion. These results indicate efficacy and safety of ASA combined with coronary revascularization in patients with obstructive HCM who have concomitant CAD.

 

References

1.    Maron B.J. Diagnosis and Managment of Hypertrophic Cardiomyopathy. Massachusetts: BlackwellFutura., 2004; 506.

2.    Romeo F., Pelliccia F., Cristofani R. et al. Hypertrophic cardiomyopathy: Is a left ventricular outflow tract gradient a major prognostic determinant? Eur. Heart J. 1990; 11: 233-240.

3.    Maron M.S., Olivotto I., Betocchi S. et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N. Engl. J. Med. 2003;348: 295-303.

4.    Sigwart U. Non surgical myocardial reduction for hypertrophic obstructive cardiomyopathy. Lancet. 1995; 346: 211-214.

5.    Knight C., Kurbaan A., Seggewiss H. et al. Non surgical septal reduction for hypertrophic obstructive   cardiomyopathy. Circulation. 1997; 95: 2075 -2081.

6.    Burry Х., Sigwart U. Alcohol ablation of interventricular septum as a method of treatment of hypertrophic obstructive cardiomyopathy. International. Journal of Interventional Cardioangiology. 2004; 4: 11-17 [In Russ].

7.    Shloydo E.A., Sukhov V.K., Kochanov I.N. Transcatheter alcohol septal ablation for hypertrophic obstructive cardiomyopathy. Report to the XII All-Russian Congress of cardiovascular surgeons. The Bulletin of Bakoulev CCVS for Cardiovascular Surgery «Cardiovascular diseases». 2006; 7(5): 84 [In Russ].

8.    Sorajja P., Ommen S.R., Nishimura R.A. et al. Adverse Prognosis of Patients With Hypertrophic Cardiomyopathy Who Have Epicardial Coronary Artery Disease. Circulation. 2003; 108: 2342-2348.

9.    Cokkinos D.V., Krajcer Z., Leachman R.D. Hypertrophic Cardiomyopathy and Associated Coronary Artery Disease. Texas Heart Institute Journal. 1985; 2: 12.

10.  2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy. J. Am. Coll,. Cardiol. 2011; 58 (25): 212-260.

11.  2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. J. Am Coll. Cardiol. 2011; 58(24): 44-122.

12.  Honda T., Sakamoto T., Miyamoto S. et al. Successful Coronary Stenting of the Left Anterior Descending Artery at the Branching Site of the Targeted Septal Perforator Immediately after Percutaneous Transluminal Septal Myocardial Ablation in Hypertrophic Obstructive Cardiomyopathy. Internal. Medicine. 2005; 44: 722-726.

13.  Nambi V., Buergler J.M., LakkisN.M. et al. Effectiveness of Percutaneous Intervention for Patients With Obstructive Hypertrophic Cardiomyopathy and Coronary Artery Disease. Am J. Cardiol. 2005; 96: 580-581.

 

 

Abstract:

Radiofrequency (RF) ablation is a minimally invasive method. Application of RF ablation allowed to expand indications for more radical treatment of kidney tumors in patients, whom traditional nephrectomy or kidney resection are impossible, due to extremely adverse somatic status

Efficiency and safety of RF ablation are significantly increased if preceded in combination with superselective occlusion of blood vessels, supplying the tumor. We possess the experience of application of superselective embolization in combination with RF ablation of two patients with kidney tumors. In both cases a good result of combined treatment has been observed.

This combination (superselective embolization + RF ablation) can be an alternative to open operation on kidney in number of patients, expanding the arsenal of modern minimally invasive kidney tumor's treatment methods. 

 

Reference 

1.    Pavlov AJu., Klimenko A. A., Momdzhan B.K., Ivanov S.A. Radiochastotnaja intersticial'naja termoabljacija (RChA) raka pochki. [Radiofrequency interstitial termal ablation of renal cancer]. Jeksperimental'naja i klinicheskaja urologija. 2011; 2(3): 112-113 [In Russ].

2.    European Network of Cancer Registries. Eurocim version 4.0. European incidence database V2.3, 730 entity dictionary (2001). Lyon, 2001.

3.    Zlokachestvennye novoobrazovanija v Rossii v 2008 g. (zabolevaemost' i smertnost'). [Malignant neoplasms in Russian Federation in 2008 (morbidity and mortality)]. Pod red. V.I. Chissova, V.V. Starinskogo, G.V. Petrovoj. M. FGU «MNIOI im. P.A. Gercena Rosmedtehnologij». 2010 [ In Russ].

4.    Chow W.H., Devesa S.S., Warren J.L., Freumeni J.FJr. Rising incidence of renal cell carcer in the United States. JAMA. 1999; 281:1628-31.

5.    Nguyen M.M., ill I.S., Ellison L.M. The evolving presentation of renal carcinoma in the United States: trends from the Surveillance, Epidemiology, and End Results program. J. Urol. 2006; 176: 2397-400; discussion 2400.

6.    Kummerlin I.P., ten Kate F.J., Wijkstra H., de la Rosette J.J., Laguna M.P. Changes in the stage and surgical management of renal tumours during 1995-2005: an analysis of the Dutch national histopathology registry. BJU Int. 2008; 102 (8): 946-51. Epub 2008 Jun 28.

7.    Ankem M.K., Nakada S.Y. Needle-nephron-sparing surgery. BJU Int. 2005; 95 (2): 46-51.

8.    Havranek E., Anderson C. Future prospects for nephron conservation in renal cell carcinoma. In: Kirby R.S., O’Leary M.P., editors. Hot topics in urology. Amsterdam. The Netherlands: Elsevier. 2004; 227-38.

9.    Marberger M., Mauerman J. Energy ablation nephron-sparing treatment of renal tumors. AUA Update Series. 2004; 23:178-83.

10.  Reddan D.N., Raj G.V., Polascik TJ. Management of small renal tumors: an overview. Am. J. Med. 2001; 110: 558-62.

11.  Weld K.J., Landman L. Comparison of cryoablation, radiofrequency ablation and high-intensity focused ultrasound for treating small renal tumors. BJU Int. 2005; 96:1224-9.

12.  Uzzo R.G., Novick A.C. Nephron sparing surgery for renal tumors: indications techniques and outcomes. J. Urol. 2001; 166:6-18.

13.  Dolgushin B.I., Kosyrev VJu., Ramprabanant S. Radiochastotnaja ablacija v onkologii. Prakticheskaja onkologija. 2007; 8(4): 219-227 [In Russ].

14.  Vogl TJ., Helmberger T.K., Mack M.G., Reiser M.F. (Eds.) Percutaneous Tumor Ablation in Medical Radiology. ISBN 978-3-540-22518-8 Springer. Berlin. Heidelberg. New York. 2008.

15.  Winthrop H. Hal, John P. McGahan, Daniel P. Link and Ralph W. deVere White. Combined Embolization and Percutaneous Radiofrequency Ablation of a Solid Renal Tumor. AJR. 2000; 174:1592-1594.

16.  Yamakado K., Nakatsuka A., Kobayashi S., Akeboshi M., Takaki H., Kariya Z., Kinbara H., Arima K., Yanagawa M., Hori Y., Kato H., Sugimura Y., Takeda K. Radiofrequency ablation combined with renal arterial embolization for the treatment of unresectable renal cell carcinoma larger than 3.5 cm: initial experience. Cardiovasc. Intervent. Radiol. 2006; 29(3): 389-94.

17.  Klingler H.C., Marberger M., Mauermann J. et al. ’Skipping’ is still a problem with radiofrequency ablation of small renal tumours. BJU Int. 2007; 99: 998-1001.

18.  Goldberg S.N., Gazelle G.S., Mueller P.R. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques and diagnostic imaging guidance. Am. J. Roentgenol. 2000; 174: 323-31.

19.  Lee M. Ellis, Steven A. Curley, Kenneth K. Tanabe. Radiofrequency Ablation for Cancer.Current Indications, Techniques, and Outcomes. 2004; Springer-Verlag New York, Inc.

20.  Salagierski M., Salagierski M. Radiofrequency ablation partial nephrectomy: a new method of nephron-sparing surgery in selected patients. Int. J. Urol. 2006; 13(11): 1456-9.

21.  Veltri A., Garetto I., Pagano E., Tosetti I., Sacchetto P., Fava C. Percutaneous RF termal ablation of renal tumors: is US guidance really less favorable than other imaging guidance techniques? Cardiovasc. Intervent. Radiol. 2009; 32(1): 76-85. Epub 2008 Aug 15.

22.  Schirmang T.C., Mayo-Smith W.W., Dupuy D.E., Beland M.D., Grand D.J. Kidney neoplasms: renal halo sign after percutaneous radiofrequency ablation-incidence and clinical importance in 101 consecutive patients. Radiology. 2009; 253(1): 263-9. Epub 2009 Jul. 31.

 

 

Abstract:

Aim: was to evaluate the effeciency of adenomyosis treatment with magnetic resonance-guided focused ultrasound (MRgFUS) ablation.

Materials and methods: from March 2012 to November 2014 on the base of «Federal Center of Medicine and Rehabilitation» of Russian Ministry of Health we have examined and treated by MRgFUS ablation 50 patients with adenomyosis. Criteria for patient selection for treatment by MRgFUS ablation were: age 25-49 years, adenomyosis symptoms, confirmed diagnosis of the disease on MRI, ultrasound and gynecological examination, technical ability to perform FUS ablation. Dynamical observation after treatment included: vaginal examination, pelvic MRI with contrast performed at 3rd, 6th and 12th month after MRgFUS ablation. Also, within a specified time patients were asked to fill a questionnaire to assess the severity of adenomyosis symptoms anc quality of life (SF-36).

Results: against the background of the treatment, patients noted significant symptoms reduction. The best result was noted 3 months after treatment: 47% of women had less abundant menstruation; 26% of patients noted a decrease of pain during menstruation; 30% of patients had decreased duration of menstruation. Positive trend maintained during a year.

Control pelvic MRI after 3 months showed positive trend for majority of patients (85%): uterus size decrease (average by 30%). From 6th to 12th month of observation, it was noted that the uterus size in 73% patients increased in comparison' to the first control study (3 months after the procedure), uterus thus again starts accumulating a contrast agent in the ablation area, indicating the restoration of blood flow.

 

References

1.     Tomassetti C., Meuleman C., Timmerman D., D'Hooghe T. Adenomyosis and subfertility: evidence of association and causation. Semin. Reprod. Med. 2013; 31(2): 101-8.

2.     Linde V.A., Tatarova N.A., Lebedeva N.E., Grishanina O.I. Epidemiologicheskie aspekty genitalnogo endometrioza (obzor literaturi). [Epidemiological aspects of genital endometriosis (review)]. Problemy reproduktsii. 2008; 14(3): 68-72. [In Russ]

3.     Maheshwari A., Gurunath S., Fatima F., Bhattacharya S. Adenomyosis and subfertility: A systematic review of prevalence, diagnosis, treatment and fertility outcomes. Human Reproduction Update. 2012; 18(4): 374-392.

4.     Naftalin J., Hoo W., Pateman K., Mavrelos D., Holland T., Jurkovic D.. How common is adenomyosis? A prospective study of prevalence using transvaginal ultrasound in a gynaecology clinic. Hum. Reprod. 2012; 27(12): 3432-9.

5.     Damirov M.M. Genitalny endometrioz - bolezn aktivnikh i delovikh zhenschin [Genital endometriosis - disease of active and business women]. M.: Binom. 2010; 191 p. [In Russ].

6.     Strizhakov A.N., Davydov A.I., Pashkov V.M., Lebedev V.A. Dobrokachestvennye zabolevaniya matki [Benign uterine diseases]. M.: GEOTAR-Media. 2011; 288 p. [In Russ].

7.     Stamatopoulos C.P., Mikos T., Grimbizis G.F, Dimitriadis A.S., Efstratiou I., Stamatopoulos P., Tarlatzis B.C. Value of magnetic resonance imaging in diagnosis of adenomyosis and myomas of the uterus. J. Minim. Invasive Gynecol. 2012; 19(5) 620-6.

8.     Sudderuddin S., Helbren E., Telesca M., Williamson R., Rockall A. MRI appearances of benign uterine disease. Clin. Radiol. 2014; 69(11): 1095-1104.

9.     Heo S.H., Lee K.H., Kim J.W., Jeong YY Unusual manifestation of endometrioid adenocarcinoma arising from subserosal cystic adenomyosis of the uterus: emphasis on MRI and positron emission tomography CT findings. Br. J. Radiol. 2011. 84(1007): e210-2.

10.   Ischenko A. I., Zhumanova E. N., Ischenko A. A., Gorbenko O. Y., Chunaeva E. A., Agadzhanyan E. S., Saveleva Y. S. Sovremennye podkhody v diagnostike i organosokhranyayuschem lechenii adenomioza [Modern approach in the diagnosis of adenomyosis and conserving therapy]. Akusherstvo, ginekologiya i reproduktsiya. 2013; 7(3): 30-34. [In Russ].

11.   Nam J.H., Lyu G.S. Abdominal Ultrasound-Guided Transvaginal Myometrial Core Needle Biopsy for the Definitive Diagnosis of Suspected Adenomyosis in 1032 Patients: A Retrospective Study. J. Minim. Invasive Gynecol. 2015 Mar-Apr; 22(3):395-402.

12.   Marret H., Bleuzen A., Guerin A., Lauvin-Gaillard M.A., Herbreteau D., Patat F., Tranquart F.; French first results using magnetic resonance-guided focused ultrasound for myoma treatment. Gynecologie. Obs. Fertil. 2011;39: 12-20.

13.   Levy G., Dehaene A., Laurent N., Lernout M., Collinet P., Lucot JP, Lions C., Poncelet E. An update on adenomyosis. Diagn. Interv. Imaging. 2013; 94(1): 3-25.

14.   Tamai K., Koyama T, Umeoka S., Saga T., Fujii S., Togashi K. Spectrum of MR features in adenomyosis. Best Pract. Res. Clin. Obstet. Gynaecol. 2006; 20(4): 583-602. 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы