Website is intended for physicians
Search:
Всего найдено: 36

Abstract:

Aim: was to identify and analyze key factors affecting the outcome of subarachnoid hemorrhage (SAH) in patients with ruptured cerebral aneurysms and endovascular embolization.

Materials and methods: as a material for this study, results of endovascular treatment of 150 patients with ruptured cerebral aneurysms operated in the acute period of subarachnoid hemorrhage were analyzed.

Results: statistically significant factors influencing the target indicator «Unfavorable outcome» on the Rankin scale (mRs 3-5) and the indicator «Fatal outcome» in patients with SAH who underwent endovascular method were identified. Among factors contributing to an unfavorable outcome are: severity of neurological status, prevalence of SAH according to computed tomography (CT), timing of surgical treatment from the moment of onset of SAH symptoms.

Conclusion: factors of severity of the condition on the Hunt-Hess scale (HH), severity of subarachnoid hemorrhage on the Fischer scale (F) and timing of the operation have the greatest influence on the outcome of subarachnoid hemorrhage of aneurysmal genesis.

 

Abstract:

Aim: was to study the impact of angiographic projection on patient and operator radiation dose during endovascular interventions aimed at diagnosing and treating cerebrovascular diseases.

Materials and methods: in experiment, radiation dose rate of phantom model (cGy?cm2/s) and equivalent dose rate from scattered radiation (mSv/h) measured in the area of conditional location of operator were studied when the angle of the X-ray tube was changed in modes of digital subtraction angiography (DSA) and fluoroscopy. Radiation dose rate of endovascular surgeon (mSv/h) was assessed during 12 cerebral angiography procedures and 15 neuro-interventions in general angiographic projections. Values of the kerma-area product (Gy?cm2), fluoroscopy time (min), operator exposure dose (µSv) during 87 procedures of endovascular occlusion of aneurysm of cavernous and supraclinoid sections of internal carotid arteries (ICA) were retrospectively analyzed to indirectly assess the effect of angiographic projection on patient and surgeon occupational dose. Interventions were divided into 2 groups depending on the location of detected aneurysm. The 1st group included 35 operations in the right ICA, the 2nd group included 53 operations in the left ICA.

Results: in experimental study, highest values of radiation dose rate of the phantom model were found in frontal projection with cranial angulation, lowest - in lateral and oblique projections; The highest average dose rates from scattered radiation in operator's area were found in left lateral projections whereas the smallest in right lateral projection in DSA mode and also in frontal and right lateral projections in fluoroscopy mode.

When studying doses of scattered radiation during neuro-interventional procedures, it was found that when the position of the X-ray tube changes from 0° in the direction of left lateral projection, an increase in the average dose rate of the operator in the DSA mode is up to 2,6 times, with fluoroscopy - up to 2,4 times. The equivalent dose rate in left lateral projection is up to 1.5 times higher than in right lateral projection. In left oblique projection, there is an increase in dose rate up to 2,3 times compared to right oblique projection.When comparing radiation exposure indicators during aneurysm embolization procedures, a significant increase in operator exposure doses is observed in group of interventions in the left ICA.

Conclusion: when performing neuro-interventional procedures, it is possible to achieve a significant reduction in radiation exposure to patient and operator without a significant loss in image quality along with maintaining optimal visualization of pathological changes by choosing angiographic projections with lower radiation doses.

 

Abstract:

Introduction: pseudo-aneurysm of subclavian artery is a rare pathology and most often develops due to trauma or iatrogenic causes. Despite the rarity of this pathology, it can be accompanied by the risk of lethal rupture or distal embolism. Article presents a case report of endovascular treatment of post-traumatic pseudo-aneurysm of right subclavian artery with a stent-graft.

Aim: was to demonstrate advantages of endovascular treatment of pseudo-aneurysms, based on case report of patient with post-traumatic pseudo-aneurysm of right subclavian artery.

Material and methods: a case report of a patient with post-traumatic pseudo-aneurysm of right subclavian artery, polytrauma and pulmonary embolism is presented.

Results: successful endovascular treatment of pseudo-aneurysm of right subclavian artery with the implantation of stent-graft was performed. Postoperative period was uneventful, and the patient was discharged with improved health.

Conclusions: endovascular treatment is the preferred method, due to its less invasiveness and lower complication frequency in comparison with open surgery.

 

 

Abstract:

Introduction: aneurysms of splenic arteries have a fairly high prevalence in relation to the total number of all visceral aneurysms. According to modern clinical guidelines, both symptomatic and asymptomatic aneurysms are subject to treatment. Recently, the priority direction in treatment of visceral aneurysms is endovascular surgery, which is characterized by minimal invasiveness and high efficiency, which makes it possible to consider transcatheter endovascular embolization of splenic artery aneurysms as the preferred method of treatment.

Aim: was to estimate the role and possibilities of endovascular methods of treatment in a patient with a false aneurysm of splenic artery (ASA) formed after pancreatic necrosis and complicated by gastrointestinal bleeding.

Materials and methods: a case report of transcatheter embolization of splenic artery aneurysm using the «front-to-back-door» technique using coils and telescopic system, is presented.

Results: patient was discharged on the 3rd day after embolization. The postoperative period proceeded calmly, there was no abdominal pain, indicators of clinical and biochemical blood tests were within acceptable limits.

Conclusions: studies devoted to treatment of giant aneurysms of splenic artery are not described in the modern literature, there are only few reports. Treatment of this type of ASA can lead to an increase in the cost of procedure, but minimal invasiveness, technical success, almost no deaths and early activation of patients make it possible to consider transcatheter endovascular embolization as the only possible method of treatment.

 

References

1.     Chaer RA, Abularrage CJ, Coleman DM, et al. The Society for Vascular Surgery clinical practice guidelines on the management of visceral aneurysms. J Vasc Surg. 2020; 72: 3-39.

https://doi.org/10.1016/j.jvs.2020.01.039

2.     Wang W, Chang H, Liu B, et al. Long-term outcomes of elective transcatheter dense coil embolization for splenic artery aneurysms: a two-center experience. J Int Med Res. 2020; 48: 300060519873256.

https://doi.org/10.1177/0300060519873256

3.     Musselwhite CC, Mitta M, Sternberg M. Splenic Artery Pseudoaneurysm. J Emerg Med. 2020; 58: 231-232.

https://doi.org/10.1016/j.jemermed.2020.02.014

4.     Rhusheet P, Mark G. Splenic artery pseudoaneurysm with hemosuccus pancreaticus requiring multimodal treatment. J. Vasc. Surg. 2019; 69: 592-595.

https://doi.org/10.1016/j.jvs.2018.06.198

5.     Venturini M, Piacentino F, Coppola A, et al. Visceral Artery Aneurysms Embolization and Other Interventional Options: State of the Art and New Perspectives. J Clin Med. 2021; 10: 2520.

https://doi.org/10.3390/jcm10112520

6.     Hemp JH, Sabri SS. Endovascular management of visceral arterial aneurysms. Tech. Vasc. Interv. Radiol. 2015; 18: 14-23.

https://doi.org/10.1053/j.tvir.2014.12.003

7.     Regus S, Lang W. Management of true visceral artery aneurysms in 31 cases. J. Visc. Surg. 2016; 153: 347-352.

https://doi.org/10.1016/j.jviscsurg.2016.03.008

8.     Kok HK, Asadi H, Sheehan M, et al. Systematic review and single center experience for endovascular management of visceral and renal artery aneurysms. J. Vasc. Interv. Radiol. 2016; 27: 1630-1641.

https://doi.org/10.1016/j.jvir.2016.07.030

9.     Gorsi U, Agarwal V, Nair V, et al. Endovascular and percutaneous transabdominal embolisation of pseudoaneurysms in pancreatitis: An experience from a tertiary-care referral centre. Clin. Radiol. 2021; 76(314): 17-23.

https://doi.org/10.1016/j.crad.2020.12.016

10.   Barrionuevo P, Malas MB, Nejim B, et al. A systematic review and meta-analysis of the management of visceral artery aneurysms. J. Vasc. Surg. 2020; 72: 40-45.

https://doi.org/10.1016/j.jvs.2020.05.018

11.   Vemireddy LP, Majlesi D, Prasad S, et al. Early Thrombosis of Splenic Artery Stent Graft. Cureus. 2021; 13: 16285.

https://doi.org/10.7759/cureus.16285

12.   Kapranov MS, Kulikovskiy VF, Karpachev AA, et al. A Case Report of Successful Endovascular Treatment of «Sentinel Bleeding» in Patient with Adverse Anatomy. EJMCM. 2020; 7(2): 146-150.

https://doi.org/10.31838/ejmcm.07.02.24

13.   Саховский С.А., Абугов С.А., Вартанян Э.Л. и др. Эндоваскулярная коррекция структурной патологии клапанов и аорты у реципиентов сердца. Эндоваскулярная хирургия. 2021; 8(1): 53-9.

Sakhovskii SA, Abugov SA, Vartanyan EL, et al. Transcatheter correction of structural valve and aortic diseases in heart recipients. Endovaskulyarnaya khirurgiya. 2021; 8(1): 53-9 [In Russ].

https://doi.org/10.24183/2409-4080-2021-8-1-53-59

14.   Tipaldi MA, Krokidis M, Orgera G, et al. Endovascular management of giant visceral artery aneurysms. Sci Rep. 2021; 11: 700.

https://doi.org/10.1038/s41598-020-80150-2

 

Abstract:

Introduction: treatment of splenic artery aneurysms is a complex and urgent task of modern surgery. With the development of endovascular techniques, it became possible to use fundamentally new minimally invasive methods for correction of this pathology, the essence of which is to exclude the aneurysm from the blood flow by embolization.

Case report: the article presents a case report of a young female patient without previous anamnesis, during regular examination, in which ultrasound examination, subsequent CT examination and angiography revealed saccular aneurysm of the proximal third of the splenic artery sized 22?24 mm.

Patient underwent successful endovascular embolization of aneurysm with microcoils and Onyx adhesive composition using balloon assistance performed through the transradial vascular access.

Conclusion: world experience and presented case report indicate high efficiency and relative safety of endovascular embolization of splenic artery aneurysms even under the condition of pathological vessel tortuosity, which significantly complicates the intervention, and also demonstrate the advantages of using transradial access in such anatomically difficult situations.

 

References

1.     Pitton MB, Dappa E, Jungmann F, et al. Visceral artery aneurysms: Incidence, management, and outcome analysis in a tertiary care center over one decade. Eur. Radiol. 2015; 25: 2004-2014.

2.     Kassem MM, Gonzalez L. Splenic Artery Aneurysm. StatPearls Publishing. 2021. Available from:

https://www.ncbi.nlm.nih.gov/books/NBK430849/

3.     Mesbahi M, Zouaghi A, Zaafouri H, et al. Surgical management of splenic artery aneurysm. Ann Med Surg (Lond). 2021; 69: 102712.

4.     Lakin RO, Bena JF, Sarac TP, et al. The contemporary management of splenic artery aneurysms. Journal of Vascular Surgery. 2011; 53: 958-965.

5.     Veluppillai C, Perreve S, de Kerviler B, Ducarme G. Splenic arterial aneurysm and pregnancy: A review. Presse Med. 2015; 44(10): 991-4.

6.     T?treau R, Beji H, Henry L, et al. Arterial splanchnic aneurysms: Presentation, treatment and outcome in 112 patients. Diagn. Interv. Imaging. 2016; 97: 81-90.

7.     Patel A, Weintraub JL, Nowakowski FS, et al. Single-center experience with elective transcatheter coil embolization of splenic artery aneurysms: technique and midterm follow-up. J. Vasc. Interv. Radiol. 2012; 23: 893-899.

8.     Hogendoorn W, Lavida A, Hunink MG, et al. Open repair, endovascular repair, and conservative management of true splenic artery aneurysms. J. Vasc. Surg. 2014; 60: 1667-1676.

9.     Reed NR, Oderich GS, Manunga J, et al. Feasibility of endovascular repair of splenic artery aneurysms using stent grafts. J Vasc Surg. 2015; 62(6): 1504-10.

10.   Posham R, Biederman DM, Patel RS, et al. Transradial approach for noncoronary interventions: a single-center review of safety and feasibility in the first 1,500 cases. J. Vasc. Interv. Radiol. 2015; 27(2): 159-166.

Abstract

Article provides a literature review on problems of diagnosing of intracranial aneurysms (IA) rupture and its complications.

Aim: was to study relevant data on the use of computed tomography (CT), as well as other imaging methods, in patients with ruptured aneurysms in the acute period.

Materials and methods: a search was conducted for publications on this topic, dating up to December 2019, using main Internet resources: PubMed databases, scientific electronic library (Elibrary), Scopus, ScienceDirect, Google Scholar.

Results: we analyzed 45 literature sources, covering the period from 1993 to 2019, which include 3 meta-analyzes, 5 descriptions of studies evaluating the effectiveness of various visualization methods for ruptured IA. Both foreign and Russian publications were involved.

Conclusion: native CT is the leading visualization method to detect hemorrhages in nearest hours after the rupture of IA. CT angiography in combination with digital subtraction angiography (DSA), according to the vast majority of authors, allows to make thorough preoperative planning in the shortest time, as well as to identify unruptured aneurysms. Based on the obtained data, it is advisable to conduct a study to assess the role of CT in the acute period of IA rupture, as well as in the diagnosis of complications in the early postoperative period.

 

References

1.     Kornienko VN, Pronin IN. Diagnostic Neuroradiology. vol. 1. M.: Medlit, 2008; 339-382 [In Russ].

2.     Hughes JD, Bond KM, Mekary RA, et al. Estimating the global incidence of aneurysmal subarachnoid hemorrhage: a systematic review for central nervous system vascular lesions and meta-analysis of ruptured aneurysms. World Neurosurg. 2018; 115: 430-447.

3.     Krylov VV, Dash'yan VG, Shetova IM, et al. Neurosurgical care in patients with vascular diseases of the brain in the Russian Federation. Nejrohirurgiya. 2017; 4: 11-20 [In Russ].

4.     Passier PE, Visser-Meily JM, Rinkel GJ, et al. Life satisfaction and return to work after aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc. Dis. 2011; 20(4): 324-329.

5.     Lovelock CE, Rinkel GJE, Rothwell PM. Time trends in outcome of subarachnoid hemorrhage: populationbased study and systematic review. Neurology. 2010; 74(19): 1494-1501.

6.     Krylov VV, Prirodov AV Risk factors for surgical treatment of middle cerebral artery aneurysms in acute hemorrhage. Nejrohirurgiya. 2011; 1: 31-41 [In Russ].

7.     Korja M, Kivisaari R, Rezai Jahromi B, Lehto H. Natural history of ruptured but untreated intracranial aneurysms. Stroke. 2017; 48(4): 1081-1084.

8.     Krivoshapkin AL, Byval'cev VA, Sorokovikov VA. Natural course and risk of rupture of cerebral aneurysms. Klinicheskaya nevrologiya. 2010; 1: 32-35 [In Russ].

9.     Lasheras JC. The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech. 2007; 39: 293-319.

10.   Etminan N, Buchholz BA, Dreier R, et al. Cerebral aneurysms: formation, progression, and developmental chronology. Transl Stroke Res. 2014; 5(2): 167-173.

11.   Nasr DM, Fugate J, Brown RD. The Genetics of Cerebral Aneurysms and Other Vascular Malformations. In: Sharma P, Meschia J (ed.) Stroke Genetics. Springer, Cham. 2017; 53-78.

12.   Broderick JP, Brown Jr RD, Sauerbeck L, et al. Greater rupture risk for familial as compared to sporadic unruptured intracranial aneurysms. Stroke. 2009;40(6): 1952-1957.

13.   Thompson BG, Brown Jr RD, Amin-Hanjani S, et al. Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(8): 2368-2400.

14.   Krylov VV, Dash'yan VG, Shatohin TA, et al. Surgical treatment of intracranial aneurysms in Russian Federation. Zhurnal Voprosy nejrohirurgii imeni NN Burdenko. 2018; 82(6): 5-14 [In Russ].

15.   Ishmuhametov AI, Abakumov MM, Sharifullin DA, Mufazalov FF. X-ray computed tomography for trauma and acute disease. Ufa: OOO MDM-ARK, 2001; 111-119 [In Russ].

16.   Ujiie H, Tamano Y, Sasaki K, et al. Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery. 2001; 48(3): 495-502.

17.   Cebral JR, Castro MA, Burgess JE, et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol. 2005; 26(10): 2550-2559.

18.   Yang ZL, Ni QQ, Schoepf UJ, et al. Small intracranial aneurysms: diagnostic accuracy of CT angiography. Radiology. 2017; 285(3): 941-952.

19.   Kleinloog R, De Mul N, Verweij BH, et al. Risk factors for intracranial aneurysm rupture: a systematic review. Neurosurg. 2018; 82(4): 431-440.

20.   Marcolini E, Hine J. Approach to the Diagnosis and Management of Subarachnoid Hemorrhage. West J Emerg Med. 2019; 20(2): 203-211.

21.   Troshin VD, Pogodina TG. Emergency Neurology: a guide. M.: Medicinskoe informacionnoe agentstvo, 2016; 322-325 [In Russ].

22.   Danilov VI. Intracranial non-traumatic hemorrhage: diagnosis and indications for surgical treatment. Nevrologicheskij vestnik. 2005; 37(1-2): 77-84 [In Russ].

23.   Krylov VV, Prirodov AV, Kuznecova TK. Surgical methods for the prevention and treatment of vascular spasm in patients after rupture of cerebral aneurysms. Nejrohirurgiya. 2014; (1): 104-115 [In Russ].

24.   Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980; 6(1): 1-9.

25.   Johnston SC, Dowd CF, Higashida RT, et al. Predictors of rehemorrhage after treatment of ruptured intracranial aneurysms: the Cerebral Aneurysm Rerupture After Treatment (CARAT) study. Stroke. 2008; 39(1): 120-125.

26.   Krylov VV, Dash'yan VG, Grigor'ev IV, et al. Results of surgical treatment of patients with ruptured aneurysms of pericallous artery. Nejrohirurgiya. 2018; 2:17-26 [In Russ].

27.   Konovalov AN, Krylov VV, Filatov YuM, et al. Recommendatory management protocol for patients with subarachnoid hemorrhage due to rupture of cerebral aneurysms. Voprosy nejrohirurgii im. NN Burdenko. 2006; (3): 3-10 [In Russ].

28.   Lebedev VV, Ishmuhametov AI, Krylov VV, et al. The role of computed tomography of the brain in the acute rupture of arterial aneurysms. Med. radiologiya. 1993; 5: 9-12 [In Russ].

29.   Dubosh NM, Bellolio MF, Rabinstein AA Edlow JA. Sensitivity of early brain computed tomography to exclude aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Stroke. 2016; 47(3): 750-755.

30.   Kidwell CS, Wintermark M. Imaging of intracranial haemorrhage. Lancet Neurol. 2008; 7(3): 256-267.

31.   Verma RK, Kottke R, Andereggen L, et al. Detecting subarachnoid hemorrhage: comparison of combined FLAIR/SWI versus CT. Eur J Radiol. 2013; 82(9): 1539-1545.

32.   Martin SC, Teo MK, Young AM, et al. Defending a traditional practice in the modern era: the use of lumbar puncture in the investigation of subarachnoid haemorrhage. Br J Neurosurg. 2015; 29(6): 799-803.

33.   Meurer WJ, Walsh B, Vilke GM, Coyne CJ. Clinical guidelines for the emergency department evaluation of subarachnoid hemorrhage. J Emerg Med. 2016; 50(4): 696-701.

34.   Epanova AA. Clinic and comparative evaluation of various methods of radiation diagnostics in the detection of cerebral aneurysms. Sibirskij medicinskij zhurnal (Tomsk). 2007; 22(S2):103-107 [In Russ].

35.   Menke J, Larsen J, Kallenberg K. Diagnosing cerebral aneurysms by computed tomographic angiography: meta-analysis. Ann Neurol. 2011; 69(4): 646-654.

36.   Agid R, Lee SK, Willinsky RA, et al. Acute subarachnoid hemorrhage: using 64-slice multidetector CT angiography to «triage» patients’ treatment. Neuroradiology. 2006; 48(11):787-794.

37.   McCormack RF, Hutson A. Can computed tomography angiography of the brain replace lumbar puncture in the evaluation of acute-onset headache after a negative noncontrast cranial computed tomography scan? Acad Emerg Med. 2010;17(4):444-451.

38.   Epanova AA. Complex radiation diagnostics of aneurysms and vascular malformations of the brain: Cand. med. sci. diss. Moscow, 2010; 124 [In Russ].

39.   Grigor'eva EV, Polunina NA, Luk'yanchikov VA, et al. Features of CT angiography and the construction of 2D and 3D reconstructions of preoperative planning in patients with intracranial aneurysms. Nejrohirurgiya. 2017; (3): 88-95 [In Russ].

40.   Klimov AB, Ryabuhin VE, Kokov LS, Matveev PD. The use of stent-grafts in treatment of cerebral aneurysms. Diagnosticheskaya i intervencionnaya radiologiya. 2016; 10(3): 51-56 [In Russ].

41.   Krylov VV, Grigor'eva EV, Hamidova LT, et al. Comparative analysis of computed tomography and intracranial Doppler ultrasonography data in patients with cerebral angiospasm. Nevrologicheskij zhurnal. 2016; 21(6):344-352 [In Russ].

42.   Saribekyan AS, Balickaya NV, Rumyancev YuI, et al. The significance of the study of cerebral blood flow by CT perfusion in assessing the risk of developing cerebral ischemia in patients with ruptured intracranial arterial aneurysms. Voprosy nejrohirurgii im. NN Burdenko. 2019; 83(3): 17-28 [In Russ].

43.   Greenberg ED, Gobin YP, Riina H, et al. Role of CT perfusion imaging in the diagnosis and treatment of vasospasm. Imaging Med. 2011; 3(3): 287-297.

44.   Krylov VV, Dash'yan VG, Shatohin TA, et al. Choice of terms for open surgical treatment of patients with rupture of cerebral aneurysms complicated by massive basal subarachnoid hemorrhage (Fisher 3). Nejrohirurgiya. 2015; 3: 11-17 [In Russ].

45.   Kokov LS. Diagnostic and interventional radiology: today and tomorrow. Zhurnal im. NV Sklifosovskogo Neotlozhnaya medicinskaya pomoshch'. 2019; 8(2): 120-123 [In Russ].

Abstract

Background: in patients with congestive heart failure (CHF), there is a change in indicators of heart mechanics against the background of myocardium remodeling. Currently, magnetic resonance imaging (MRI) and speckle tracking echocardiography provide additional options for assessing changes in heart mechanics. Evaluation of mechanics of the myocardium rotational movement according to coronarography (CAG) has not been found in available literature. In this regard, there is a need to develop a methodology that allows to obtain a mathematical description of rotation processes and heartbeat during the CAG.

Material and methods: study included 90 patients aged 30-71 to assess indicators of heart rotation mechanics. Subjects were divided into groups: with dilated cardiomyopathy (DCMP, n=30), left ventricular aneurysm (LVA, n=30) and patients with autonomic nervous system disorder (ANSD, n=30) without heart failure (control group). Mechanics of heart rotation was studied using the CAG technique, modified by us, based on mathematical calculations of the rotation angle in motion of points on the heart surface, determined on the coronary angiogram in two projections.

Results: study found out, that in patients with DCMP and LVA with chronic heart failure, the angle of rotation of the heart was significantly lower than in patients with ANSD who do not have heart disease (p <0,05). The link between impaired myocardial contractile function in patients with DCMP and LVA with chronic heart failure and a decrease in the heart rotation angle was confirmed (DCMP: ?2=9,774; df=1; P <0,05), (LVA: ?2=9,600; df=1; P <0,05).

Conclusion: coronarography technique that we modified, makes it possible to quantify changes in parameters of the heart mechanics in examined patients. This makes it possible to determine the presence or absence of heart failure, depending on results.

  

References 

1.     Fomin IV. Chronic heart failure in the Russian Federation: what we know today and what we should do. Russian Journal of Cardiology. 2016, 8(136): 7-13 [In Russ].

2.     Belenkov YuN, Mareev VYu. Principles of rational treatment of heart failure.M. 2000. 266 [In Russ].

3.     Popescu BA, Beladan CC, Calin A, et al. Left ventricular remodelling and torsional dynamics in dilated cardiomyopathy: reversed apical rotation as a marker of disease severity. EurJHeartFail. 2009;11(10): 945-51.

4.     Pavlyukova EN, Kuzhel' DA, Matyushin GV, Savchenko EA, Filippova SA. Rotation, twisting and spinning of the left ventricle: physiological role and significance in clinical practice. Regional pharmacotherapy in cardiology. 2015; 11(1): 68-78 [In Russ].

5.     Mondillo S, Galderisi M, Mele D, et al.; Echocardiography Study Group Of The Italian Society Of Cardiology (Rome, Italy). Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med. 2011;30(1):71-83.

6.     Sergio Mondillo, MD, Maurizio Galderis, et al. Speckle-tracking echocardiography - a technique for assessing myocardial function. June 2, 2016. The international online community of specialists in ultrasound diagnostics [In Russ].

7.     Leitman M, Lysyansky P, Sidenko S et al. Two-dimensionalstrain - a novel software for real-time quantitative echocardiographic assessment of myocardial function. J. Am. Soc. Echocardiogr. 2004; 17(10): 1021-1029.

8.     Amundsen BH, Helle-Valle T, Edvardsen T et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J. Am. Coll. Cardiol. 2006; 47(4): 789-793.

9.     Buckberg G.D., Weisfeldt M.L., Ballester M. [et al.] Left ventricular form and function: scientific priorities and strategic planning for development of new views of disease. Circulation. 2004; 110: 333-336.

10.   Mirsky I., Parmley W.W. Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circ. Res. 1973; 33: 233-243.

11.   Pouleur A., Knappe D., Shah A. [et al.] Relationship between improvement in left ventricular dyssynchrony and contractile function and clinical outcome with cardiac resynchronization therapy: the MADIT-CRT trial. Eur. Heart J. 2011; 32:1720-29.

12.   Vermes E., Tardif J.C., Bourassa M.G. [et al.] Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction: insight from the Studies of Left Ventricular Dysfunction (SOLVD) trials. Circulation. 2003; 931: 2926-2.

13.   Victor Mor-Avi et al. The consensus decision of the American Echocardiographic Society and the European Association of Echocardiography on the methodology and indications, approved by the Japanese Society of Echocardiography. Articles. 07/07/2015 [In Russ].

14.   Roberto M Lang, Michelle Bierig [et al.] Roberto M Lang, Michelle Bierig [et al.]Recommendations for quantifying the structure and chambers of the heart.. Russian Journal of Cardiology 2012; 3(95). This edition of guidelines is published in Eur J Echocardiography 2006; 7: 79-108 [In Russ].

 

Abstract

Aim: was to study features of the clinical course, instrumental and biochemical parameters of patients with atherosclerotic aneurysmal expansion of the abdominal aorta on the base of retrospective analysis and prospective observation to determine indications for timely surgical correction.

Materials and methods: patients with the maximum diameter of the infra-renal abdominal aorta from 26 to 50mm (n=60) without primary indications for surgical treatment (endovascular abdominal aortic aneurysm repair) were selected for the prospective follow-up group. For the period of 2 years, all patients from prospective group underwent duplex scanning of the abdominal aorta every 6 months and multislice computed tomography (MSCT) of the aorta – once a year. The retrospective analysis included results of preoperative clinical-instrumental and laboratory examination of patients (n=55) who underwent endovascular aneurysm repair (EVAR) of the abdominal aorta with a maximum diameter of the infra-renal abdominal aorta more than 50mm.

Results: when comparing clinical, instrumental and biochemical parameters in patients with abdominal aortic aneurysm (AAA) before surgery and atherosclerotic aneurysmal abdominal aortic expansion of different degrees, not requiring surgical correction at the time of inclusion, it was shown that patients with AAA, statistically significantly differed from patients with AAA in clinical symptoms (pulsation and abdominal pain), burdened heredity, the number of smokers. There were no statistically significant differences in the severity of coronary and peripheral atherosclerosis. When comparing results of ultrasound duplex scanning and MSCT to estimate linear dimensions of the abdominal aorta in the group of patients with aneurysmal dilation and in the group of patients with abdominal aortic aneurysm, the comparability of results has been revealed. Prospective observation of patients with abdominal aortic aneurysmal dilation revealed predictors of disease progression: age less than 65 years, diameter of the upper third of the abdominal aorta more than 23mm, maximum diameter of the abdominal aorta more than 43mm, length of aneurismal dilation more than 52mm.

Conclusion: obtained results allowed to determine most informative indicators and criteria for the progression of atherosclerotic aneurysm expansion of the abdominal aorta, to determine further tactics of treatment, including the need for surgical correction of this pathology.

 

References

1.     Braithwaite B, J Cheshire N, M Greenhalgh R, Grieve R. IMPROVE Trial Investigators. Endovascular strategy or open repair for ruptured abdominal aortic aneurysm: oneyear outcomes from the IMPROVE randomized trial. Eur Heart J. 2015; 36(31): 2061-2069.

2.     Bown MJ. Meta-Analysis of 50 Years of Ruptured Abdominal Aortic Aneurysm the growth rate of small abdominal aortic aneurysms: A randomized placebocontrolled trial (AARDVARK). Eur Heart J. 2016; 37(42):3213-21.

3.     Kabardieva MR, Komlev AE, Kuchin IV, Kolmakova TE, Sharia MA, Imaev TE, Naumov VG, Akchurin RS. Abdominal aortic aneurysm: the view of a cardiologist and cardiovascular surgeon. Atherosclerosis and dyslipidemia. 2018; 33(4):17-24 [In Russ].

4.     Toghill BJ, Saratzis A, Liyanage LS, Sidloff D, Bown MJ. Genetics of Aortic Aneurysmal Disease. eLS: John Wiley & Sons, Ltd. Circulation. 2016; 133(24): 2516-2528.

5.     Kazanchian PO. Ruptures of abdominal aortic aneurysms. PO Kazanchian, VA Popov, PG Sotnikov. M.: Publisher MEI, 2006: 254 [In Russ].

6.     Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, Evangelista A, Falk V, Frank H, Gaemperli O, Grabenwoger M, Haverich A, Iung B, Manolis AJ, Meijboom F, Nienaber CA, Roffi M, Rousseau H, Sechtem U, Sirnes PA, Allmen RS, Vrints J; ESC Committee for Practice Guidelines. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014: 35(41): 2873-2926.

7.     Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, van Herwaarden JA, Holt PJ, van Keulen JW, Rantner B, Schlosser FJ, Setacci F, Ricco JB; European Society for Vascular Surgery. Management of abdominal aortic aneurysms clinical practice guidelines of the European Society for Vascular Surgery. Eur J Vasc Endovasc Surg. 2011; 4: 1-58.

8.     Akchurin RS, Imaev TE. Vascular diseases. Aortic aneurysms. RS Akchurin, TE Imaev. Cardiology guidelines, edited by EI Chazov; 4: 548 [In Russ].

9.     National recomendations on management of patient with abdominal aorta aneurysms. Angiology and vascular surgery. 2013; 19(2) (appendix) [In Russ].

10.   Polyakov RS, Abugov SA, Charchian ER, Pyreckiy MV, Saakyan YM. Selection of patients for endovascular prosthetics of abdominal aorta. Medical alphabet. 2016; 1 (11) (274): 33-37 [In Russ].

11.   Kuchin IV, Imaev TE, Lepilin PM, Kolegaev AS, Komlev AE, Ternovoy SK, Akchurin RS. Recent state of a problem in endovascular treatment of infrarenal abdominal aortic aneurysm. Angiology and vascular surgery. 2018; 24 (3): 60-66 [In Russ].

12.   Lindholt JS, Bjorck M, Michel JB. Anti-platelet treatment of middle-sized abdominal aortic aneurysms. Curr Vasc Pharmacol. 2013; 11(3): 305-13.

13.   Chaikof EL. The Care of Patients with an Abdominal Aortic Aneurysm: The Society for Vascular Surgery Practice Guidelines. EL Chaikof, DC Brewster, RL Dalman [et al.] J. Vasc. Surg. 2009; 50(4): Suppl. 2-49.

14.   Hirsch AT, Haskal ZJ, Hertzer NR [et al.] Practice Guidelines for the Management of Patients with Peripheral Arterial Disease. Circ. 2006; 113: 463-654.

15.   Johnston KW, Rutherford RB, Tilson MD. Suggested Standards for Reporting on Arterial Aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery. J. Vasc. Surg. 1991; 13 (3): 452-458.

16.   Ashton HA, Buxton MJ, Day NE, Kim LG, Marteau TM, Scott RA, et al., Multicentre Aneurysm Screening Study Group. The Multicentre Aneurysm Screening Study (MASS) into the effect of abdominal aortic aneurysm screening on mortality in men: a randomised controlled trial. Lancet. 2002;360(9345):1531-9. doi: http://dx.doi.org/10.1016/S0140-6736(02)11522-4. PubMed.

17.   Johansson M, Zahl PH, Volkert Siersma V, Jorgensen KJ, Marklund B, Brodersen J. Benefits and harms of screening men for abdominal aortic aneurysm in Sweden: a registry-based cohort study. Lancet. 2018; 391(10138): 2441-2447.

18.   Anjum A, Powell JT Is the incidence of abdominal aortic aneurysm declining in the 21st century? Mortality and hospital admissions for England & Wales and Scotland. Eur J Vasc Endovasc Surg. 2012; 43: 161-166.

 

Abstract

Aim: was to determine characteristic signs of instability and threatening rupture of abdominal aortic aneurysms, detected by computed tomography (CT) according to analysis of modern literature.

Materials: international clinical recommendations and studies of 36 domestic and foreign authors on the diagnosis of abdominal aortic aneurysms (AAA) using computed tomography (CT) were studied. We studied publications that describe the pathogenetic mechanisms of AAA rupture, structural changes in the aortic wall and surrounding tissues, which can be regarded as signs of the formation of aneurysm rupture.

Conclusion: according to literature, specific CT signs of aortic wall instability and data on the high diagnostic value of some of them are presented. Methodological aspects of the analysis of CT data are described for large aneurysms and complex configurations.

  

References

1.      Pokrovskij A.V. (red.). Clinical Angiology: practical guide in in 2 vol. M.: Medicina. 2004. [In Russ]

2.      Davis C.A. Computed tomography for the diagnosis and management of abdominal aortic aneurysms. Surg. Clin. North Am. 2011; 91(1): 185-193.

3.      National guidelines for the management of patients with abdominal aortic aneurysms. Angiologiya i serdechno-sosudistaya hirurgiya. 2013; 19 (2, Pril.): 72. [In Russ]

4.      Prokop M., Galanski M. (red.). Spiral and multilayer computed tomography: in 2 vol. 3-e izd. M.: MEDpress- info. 2011. [ [In Russ]

5.      Pleumeekers H.J., Hoes A.W., van der Does E., et al. Aneurysms of the abdominal aorta in older Aneurysms of the abdominal aorta in older adults. The Rotterdam Study. Am. J. Epidemiol. 1995; 142 (12): 1291-1299.

6.      Singh K., Bonaa K.H., Jacobsen B.K., et al. Prevalence and risk factors for abdominal aortic aneurysms in a ence and risk factors for abdominal aortic aneurysms in a population-based study: the Tromsu Study. Am. J. Epidemiol. 2001; 154 (3): 236-244.

7.      Ahmed M.Z., Ling L., Ettles D.F. Common and uncommon CT findings in rupture and impending rupture of abdominal aortic aneurysms. Clin. Radiol. 2013; 68(9): 962-971.

8.      Genovese E.A., Fonio P, Floridi C. et al. Abdominal vascular emergencies: US and CT assessment. Crit. Ultrasound J. 2013; 5(Suppl 1): S10.

9.      Wadgaonkar A.D., Black J.H. 3rd, Weihe E.K. et al. Abdominal aortic aneurysms revisited: MDCT with multi-planar meconstructions for identifying indicators of instability in the pre- and postoperative patient. Radiographics. 2015; 35 (1): 254-268.

10.    Vorp D. Biomechanics of abdominal aortic aneurysm. J. Biomech. 2007; 40(9): 1887-1902.

11.    Fillinger M.F., Racusin J., Baker R.K. et al. Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: Implications for rupture risk. J. Vasc. Surg. 2004; 39 (6): 1243-1252.

12.    Hinchliffe R.J, Alric P, Rose D. et al. Comparison of morphologic features of intact and ruptured aneurysms of infrarenal abdominal aorta. J. Vasc. Surg. 2003; 38(1): 88-92.

13.    Johnson P.T., Fishman E.K. IV contrast selection for MDCT: current thoughts and practice. AJR Am. J. Roentgenol. 2006; 186 (2): 406-415.

14.    Brewster D.C., Cronenwett J.L., Hallett J.W. Jr et al. Guidelines for the treatment of abdominal aortic aneurysms. Report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery. J. Vasc. Surg. 2003; 37(5): 1106-1117.

15.    Vu K.N., Kaitoukov Y, Morin-Roy F. et al. Rupture signs on computed tomography, treatment, and outcome of abdominal aortic aneurysms. Insights Imaging. 2014; 5 (3): 281-293.

16.    Halliday K.E., al-Kutoubi A. Draped aorta: CT sign of contained leak of aortic aneurysms. Radiology. 1996; 199(1): 41-43.

17.    Yuksekkaya R., Koner A.E., Celikyay F. et al. Multidetector computed tomography angiography findings of chronic-contained thoracoabdominal aortic aneurysm rupture with severe thoracal vertebral body erosion. Case Rep. Radiol. 2013; 2013: 596517.

18.    Schwartz S.A., Taljanovic M.S., Smyth S. et al. CT findings of rupture, impending rupture, and contained rupture of abdominal aortic aneurysms. AJR Am. J. Roentgenol. 2007; 188 (1): W57-62.

19.    Mehard W.B., Heiken J.P., Sicard G.A. High-attenuating crescent in abdominal aortic aneurysm wall at CT: a sign of acute or impending rupture. Radiology. 1994; 192(2): 359-362.

20.    Radiological diagnosis of diseases of the heart and blood vessels: a national guide. (edited by L.S. Kokova). M.: GEHOTAR-Media. 2011; 256. [ [In Russ]

21.    Erbel R., Aboyans V., Boileau C. et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 2014; 35 (41): 28732926.

22.    Vorp D.A., Raghavan M.L., Webster M.W. Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry. J. Vasc. Surg. 1998; 27(4): 632639.

23.    Fillinger M.F., Raghavan M.L., Marra S.P. et al. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 2002; 36(3): 589-597.

24.    Kontopodis N., Metaxa E., Papaharilaou Y et al. Advancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture. Vascular. 2015; 23(1): 65-77.

25.    Doyle B.J., Callanan A., Burke P.E. et al. Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J. Vasc. Surg. 2009; 49(2): 443-454.

26.    Giannoglou G., Giannakoulas G., Soulis J. et al. Predicting the risk of rupture of abdominal aortic aneurysms by utilizing various geometrical parameters: Revisiting the diameter criterion. Angiology. 2006; 57(4): 487-494.

27.    Georgakarakos E., Ioannou C.V., Kamarianakis Y et al. The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. Eur. J. Vasc. Surg. 2010; 39(1): 42-48.

28.    Moxon J.V., Adam Parr, Emeto T.I. et al. Diagnosis and monitoring of abdominal aortic aneurysm: Current status and future prospects. J. Curr. Probl. Cardiol. 2010; 35: 512-548.

29.    Polzer S., Gasser T.C., Swedenborg J., Bursa J. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 2011; 41 (4):467-473.

30.    Hunter G.C., LeongS.C., Yu G.S. Aortic blebs: Possible site of aneurysm rupture. J. Vasc. Surg. 1989; 10(1): 93-99.

31.    Rakita D., Newatia A., Hines J.J. et al. Spectrum of CT findings in rupture and impending rupture of abdominal aortic aneurysms. RadioGraphics. 2007; 27(2): 497-507.

32.    Oldenburg W.A., Almerey T. Erosion of lumbar vertebral bodies from a chronic contained rupture of an abdominal aortic pseudoaneurysm. J. Vasc. Surg. Cas. Innovat. Techn. 2016; 2(4): 197-199.

33.    Endovascular aneurysm repair vs. open repair in patients with abdominal aortic aneurysm (EVAR trial 1): randomized control trial. Lancet. 2005; 365: 2179-2186.

34.    Zarins C.K., White R.A., Fogarty T.J. Aneurysm rupture after endovascular repair using the aneurx stent graft. J. Vasc. Surg. 2000; 31(5): 960-970.

35.    Zarins C.K., White R.A., Hodgson K.J. et al. Endoleak as a predictor of outcome after endovascular aneurysm repair: AneuRx multicenter clinical trial. J. Vasc. Surg. 2000; 32(1): 90-107.

36.    Bernhard V.M., Mitchell R.S., Matsumura J.S. et al. Ruptured abdominal aortic aneurysm after endovascular repair. J. Vasc. Surg. 2002; 35(6): 1155-1162.

 

Abstract

Aim: was to define possibilities of multispiral computed tomography (MSCT) in assessment of condition of aorta and it's branches, during preparation for reconstructive surgery in patients with horseshoe kidney.

Material and methods: for the period 2015-2018, 415 patients were examined during preparation for aortic reconstructive surgery. Patient underwent target ultrasonic diagnostics, followed by computed tomography made on 256-slice Philips iCT, before and after injection of contrast agent. We used a special program for comparing various phases of the study ("Fusion") for better visualization of arterial vessels of kidney, aorta and renal excretory system. In 5 cases, a combination of aortic pathology with abnormal horseshoe kidney was revealed.

Results: in all cases we revealed branched type of blood supply of abnormal kidney A total of 5 patients had 25 renal arteries. In 4 cases we revealed branched type of renal veins, its total ammount was 20. Duplication of upper urinary tract was found in 1 case. From the surveyed group, 3 patients out of 5 were operated. Intraoperatively all data detected by CT scan regarding the condition of the aorta, the position of the kidney, the number of renal vessels were confirmed.

Conclusion: MSCT allows detailly assessment of anatomical features of abnormal horseshoe kidney and facilitates subsequent surgical intervention in patients with a rare combination of aortic pathology and a horseshoe kidney.

  

References

1.       Kirkpatrick J.J., Leslie S.W. Horseshoe Kidney. In: StatPearls [Internet], 2018.

2.       Gianfagna F., Veronesi G., Bertu L, et al. Prevalence of abdominal aortic aneurysms and its relation with cardiovascular risk stratification: protocol of the Risk of Cardiovascular diseases and abdominal aortic Aneurysm in Varese (RoCAV) population based study. BMC Cardiovasc Disord. 2016;16(1):243. Published 2016 Nov 29. doi:10.1186/s12872-016-0420-2.

3.       Joanna Mikolajczyk-Stecyna, Aleksandra Korcz, Marcin Gabriel et al. Risk factors in abdominal aortic aneurysm and aortoiliac occlusive disease and differences between them in the Polish population. Scientific Reports (2013) volume3: 3528.

4.       Davidovic L Markovic M, Ilic N et al. Repair of abdominal aortic aneurysms in the presence of the horseshoe kidney. IntAngiol. 2011 Dec;30(6):534-40.

5.       Kumar Y, Hooda K, L.i S., Goyal P, et al. Abdominal aortic aneurysm: pictorial review of common appearances and complications. Ann TranslMed. 2017;5(12):256.

6.       Stephen P Reis, Bill S. Majdalany, Ali F. AbuRahma et al., ACR Appropriateness Criteria Pulsatile Abdominal Mass Suspected Abdominal Aortic Aneurysm. J Am Coll Radiol 2017;14:S258-S265

7.       CHekhoeva O.A., Buryakina S.A., Alimurzaeva M.Z., Gontarenko V.N. Aneurysm of the infrarenal aorta in combination with a horseshoe-shaped kidney: case report. Medicinskaya vizualizaciya №3 2016. C.: 63-70. [In Russ.] 

8.       B.V. Fadin, A.B. Mal'gin, S.V. Berdnikov i dr. Aneurysm of the abdominal aorta in combination with a horseshoe-shaped kidney. ZHurnal angiologiya i sosudistaya hirurgiya . 2002 TOM 8 №3 Str. 113-119. [In Russ.]

9.       Ignat'ev I.M., Volodyuhin M.YU., Zanochkin A.V. Endoprosthetics of the abdominal aortic aneurysm in a patient with a horseshoe-shaped kidney. Arhitektura zdorov'ya. [Internet souce] http://www.archealth.ru/ tekushchee-izdanie/zdorove-i-meditsina/klinicheskie- issledovaniya/11-endoprotezirovanie-anevrizmy-bryush- noj-aorty-u-patsienta-s-podkovoobraznoj-pochkoj

10.     Troickij V.I., Habazov R.I., Lysenko E.R. i dr. Surgical treatment of abdominal aortic aneurysm in a patient with a horseshoe-shaped kidney. Angiologiya i sosudistaya hirurgiya. 2003; 9 (2): 122-125. [In Russ.]

  

Abstract:

Background: clinical case of a rarely encountered pathology (0.1-3.5%) in cardiac surgery, such as the aneurysm of the left coronary artery (LCA), is presented. It was detected and analyzed by coronary angiography and coronary CT angiography

Aim: was to show possibilities of radiation research methods in identifying and evaluating of coronary artery aneurysms.

Materials and methods: a 67-year-old patient was referred to the Federation National Center of Cardiovascular Surgery (Penza) for follow-up examination (coronary angiography) and to decide on the choice of management due to the presence of critical aortic valve stenosis. Performed coronary angiography and subsequent coronary CT angiography for demonstrate the topography of the aneurysm.

Results: according to the data of coronary angiography at the region of trifurcation of the LCA or the anterior descending artery, intermediate and circumflex arteries a large-sized aneurysm is visualized. Due to coronary CT angiography data, the one is located at a distance of 1.0 cm from the entrance of the LCA in the area of trifurcation. It's presented by an aneurysmal dilatation of a rounded shape 1.3 cm in diameter with locally calcific walls.

Conclusion: coronary angiography and coronary CT angiography made it possible to identify anc examine individual morphological features of the anatomy of the coronary artery aneurysm, as well as demonstrate and take apart its topography to clearly, which in turn made it possible to rationally determine the management of the patient.

 

References

1.      Markis JE, Joffe CD, Cohn PF. et al. Clinical significance of coronary arterial ectasia. Am. J. Cardiol. 1976; 37 (2): 217-222.

2.      Newburger JW, Takahashi M, Gerber MA. et al. Diagnosis, treatment, and longterm management of Kawasaki disease: a statement for health profes sionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics. 2004; 114(6): 1708-1733.

3.      Pahlavan PS, Niroomand F. Coronary artery aneurysm: a review. Clin. Cardiol. 2006; 29 (10): 439-443.

4.      Swaye PS, Fisher LD, Litwin P. et al. Aneurysmal coronary artery disease. Circulation. 1983; 67(1): 134-138.

5.      Japanese Ministry of Health and Welfare, Research Committee on Kawasaki Disease. Report of Subcommittee on Standardization of Diagnostic Criteria and Reporting of Coronary Artery Lesions in Kawasaki Disease. Tokyo, Japan: Japanese Ministry of Health and Welfare, 1984.

6.      Hartnell GG, Parnell BM, Pridie RB. Coronary artery ectasia. It’s prevalence and clinical significance in 4,993 patients. Br. Heart J. 1985; 54 (4): 392-395.

7.      Morgagni JB. The seats and causes of diseases investigated by anatomy. Italy: Ex typographia Remondiniana. Venice. 1761. Epis 27. Art 28.

8.      Falsetti HL, Carrol RJ. Coronary artery aneurysm: a review of the literature with a report of 11 new cases. Chest. 1976; 69(5): 630-636.

9.      Aqel RA, Zoghbi GJ, Iskandrian A. Spontaneous coronary artery dissection, aneurysms, and pseudoaneurysms: a review. Echocardiography. 2004; 21(2): 175182.

10.    Jha NK, Ouda HZ, Khan JA. et al. Giant right coronary artery aneurysm - case report and literature review. J. Cardiothorac. Surg. 2009; 4: 18.

11.    Alcock R, Naoum C, Ng A.C. Giant right coronary aneurysm: a case of mistaken identity. Eur. Heart J. 2011; 32: 2712.

12.    Topaz O, Rutherford MS., Mackey-Bojack S. et al. Giant aneurysms of coronary arteries and saphenous vein grafts: angiographic findings and histopathological correlates. Cardiovasc. Pathol. 2005; 14: 298-302.

13.    Kato H, Sugimura T, Akagi T. et al. Long-term consequences of Kawasaki disease: a 10- to 21-year follow-up study of 594 patients. Circulation. 1996; 94: 1379-1385.

14.    Williams MJ, Stewart RA. Coronary artery ectasia: local pathology or diffuse disease? Cathet. Cardiovasc. Diagn. 1994; 33(2): 116-119.

15.    Cohen P, O’Gara PT. Coronary artery aneurysms. A review of the natural history, pathophysiology, and management. Cardiol. Rev. 2008; 16(6): 301-304.

16.    Doustkami H, Maleki N, Tavosi Z. Left main coronary artery aneurysm. J. Tehran. Heart Cent. 2016; 11(1): 41-45.

17.    Li D, Wu Q, Sun L. et al. Surgical treatment of giant coronary artery aneurysm. J. Thorac. Cardiovasc. Surg. 2005; 130 (3): 817-821.

18.    Baman TS., Cole JH, Devireddy CM. Risk factors and outcomes in patients with coronary artery aneurysms. Am. J. Cardiol. 2004; 93: 1549-1551.

19.    Alfonso F, Perez-Vizcayno MJ, Ruiz M. et al. Coronary aneurysms after drug-eluting stent implantation: clinical, angiographic, and intravascular ultrasound findings. J. Am. Coll. Cardiol. 2009; 53: 2053-2060.

20.    Slota PA, Fischmann DL, Savage MP, et al. Frequency and outcome of development of coronary artery aneurysm after intracoronary stent placement and angioplasty. Am. J. Cardiol. 1997; 79:1104-1106.

21.    Senzaki H. The pathophysiology of coronary artery aneurysms in Kawasaki disease: role of matrix metalloproteinases. Arch. Dis. Child. 2006; 91 (10): 847-851.

22.    Sharma BK, Jain S, Suri S. et al. Diagnostic criteria for Takayasu arteritis. Int. J. Cardiol. 1996; 54: 141-147.

23.    Hsi DH, Ryan GF, Hellems SO. et al. Large aneurysms of the ascending aorta and major coronary arteries in a patient with hereditary hemorrhagic telangiectasia. Mayo. Clin. Proc. 2003; 78 (6): 774-776.

24.    Onoda K, Tanaka K, Yuasa U. et al. Coronary artery aneurysm in a patient with Marfan syndrome. Ann. Thorac. Surg. 2001; 72 (4): 1374-1377.

25.    Hisham MF. Sherif, Ray A. Blackwell. Successful Coronary Artery Bypass in Ehlers-Danlos Type IV Syndrome Case Report and Review of the Literature. Tex. Heart. Inst. J. 2012; 39 (5): 699-702.

26.    Davis GG, Swalwell CI. Acute aortic dissections and ruptured berry aneurysms associated with methamphetamine abuse. J. Forensic. Sci. 1994; 39 (6): 1481-1485.

27.    Villines TC, Avedissian LS, Elgin EE. Diffuse non-atherosclerotic coronary aneurysms. Cardiol. Rev. 2005; 13: 309-311.

28.    Nazareth J, Weinberg L, Fernandes J, et al. Giant right coronary artery aneurysm presenting with non-ST elevation myocardial infarction and severe mitral regurgitation: a case report. J. Med. Case Rep. 2011; 5: 442.

29.    Manginas A, Cokkinos DV. Coronary artery ectasias: imaging, functional assessment and clinical implications. Eur. Heart J. 2006; 27 (9): 1026-1031.

30.    Sokmen G, Tuncer C, Sokmen A. et al. Clinical and angiographic features of large left main coronary artery aneurysms. Int. J. Cardiol. 2008; 123 (2): 79-83.

31.    Topaz O, DiSciascio G, Cowley MJ. et al. Angiographic features of left main coronary artery aneurysms. Am. J. Cardiol. 1991; 67 (13): 1139-1142.

32.    Mata KM, Fernandes CR, Floriano EM. et al. Coronary artery aneurysms: an update. Novel Strategies in Ischemic Heart Disease. Rijeka, Croatia: In. Tech. 2012; 381-404.

33.    Tunick PA, Slater J, Kronzon I. et al. Discrete atherosclerotic coronary artery aneurysms: a study of 20 patients. J. Am. Coll. Cardiol. 1990; 15: 279-282.

34.    Bhindi R, Testa L, Ormerod OJ, Banning A.P. Rapidly evolving giant coronary aneurysm. J. Am. Coll. Cardiol. 2009; 53 (4): 372.

35.    Chia HM, Tan KH, Jackson G. Non-atherosclerotic coronary artery aneurysms: two case reports. Heart. 1997; 78 (6): 613-616.

36.    LaMotte LC, Mathur VS. Atherosclerotic coronary artery aneurysms: 8-year angiographic follow-up. Tex. Heart Inst. J. 2000; 27 (1): 72-73.

37.    Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N. Engl. J. Med. 2001; 345 (26): 1863-1869.

38.    Mavrogeni S, Markousis-Mavrogenis G., Kolovou G. Contribution of cardiovascular magnetic resonance in the evaluation of coronary arteries. World J. Cardiol. 2014; 6 (10): 1060-1066.

 

Abstract:

A 57-year-old woman was on the waiting list of Orthotopic Liver Transplantation (OLT) due to cirrhosis of viral etiology MSCT with contrast enhancement showed two aneurysms of the splenic artery, stenosis of the celiac trunk with aneurysm of the pancreaticoduodenal artery Taking into account asymptomatic course, we decided to eradicate vascular changes during the forthcoming OLT OLT performed 6 month later, was technically difficult and complicated by massive blood loss and episodes of unstable hemodynamics, so surgical correction of aneurysms was not performed because of high risk. The patient was well and asymptomatic for 2 years after the OLT, but then she developed abdominal pain. MSCT showed progression of vascular changes. Successful endovascular treatment included celiac trunk stenting and embolization of aneurysms. 

 

References

1.      Unger L, Stork T, Bucsics T, et al. The role of TIPS in the management of liver transplant candidates. United Eur. Gastroenterol. J. 2017; 5 (8): 1100-1107.

2.      Garcia-Pagan JC, Caca K, Bureau C, et al. Early use of TIPS in patients with cirrhosis and variceal bleeding. N. Engl. J. Med. 2010; 362 (25): 2370-2379.

3.      Bacalbasa N, Balescu I, Brasoveanu V. Celiac Trunk Stenosis Treated by Resection and Splenic Patch Reconstruction - A Case Report and Literature Review. In Vivo. 2018; 32 (3): 699-702.

4.      Degheili J., Chediak A., Dergham M, et al. Pancreaticoduodenal Artery Aneurysm Associated with Celiac Trunk Stenosis: Case Illustration and Literature Review. Hindawi. Case reports in radiology. Volume 2017, Article ID 6989673,7 pages.

5.      Uchida H, Sakamoto S, Matsunami M., et al. Hepatic artery reconstruction preserving the pancreaticoduodenal arcade in pediatric liver transplantation with celiac axis compression syndrome: report of a case. Pediatr. Transplant. 2014; 18 (7): 232-235.

6.      Katsura M, Gushimiyagi M, Takara H, et al. True aneurysm of the pancreaticoduodenal arteries: a single institution experience. Journal of Gastrointestinal Surgery. 2010; 14 (9): 1409-1413.

7.      Chiang K, Johnson C, McKusick M, et al. Management of inferior pancreaticoduodenal artery aneurysms: a 4-year, single centre experience. CardioVascular and Interventional Radiology. 1994; 17 (4): 217-221.

8.      Koganemaru M, Abe T, Nonoshita M, et al. Follow-up of true visceral artery aneurysm after coil embolization by three-dimensional contrast-enhanced MR angiography. Diagnostic and Interventional Radiology. 2014; 20 (2): 129-135.

9.      Bastante D, Raya M, Rabelo V., et al. Analysis of ischemic cholangiopathy after treatment of arterial thrombosis in liver transplantation in our series. Transplant Proc. 2018; 50 (2): 628-630.

10.    Polikarpov AA, Tarazov PG, Granov DA, Polysalov VN. Arterial aneurysm of internal organs: the role of angiography and transcatheter embolization. Regional blood circulation and microcirculation. 2002; 1 (2): 30-36 [In Russ].

11.    Tien Y-W, Kao H-L, Wang H-P. Celiac artery stenting: a new strategy for patients with pancreaticoduodenal artery aneurysm associated with stenosis of the celiac artery. Journal of Gastroenterology. 2004; 39 (1): 81-85.

12.    Granov AM, Granov DA, Zherebcov FK, Polysalov VN, Gerasimova OA et al. Experience of 100 liver transplantation in RSCRST. Herald of surgery I.I. Grekov. 2012; 171 (2): 74-77 [In Russ].

13.    Gautier SV, Moysuk YG, Homyakov SM. Organ donation and transplantation in Russian Federation in 2014. 7-th report of National Register. Russian Journal of Transplantology and Artificial Organs. 2015; 17 (2): 7-22 [In Russ].

14.    Tarazov PG, Granov DA, Polikarpov AA, Generalov MI. Orthotopic liver transplantation: The role of interventional radiology. Herald of transplantology and artificial organs. 2009; 3: 42-50 [In Russ]. 

 

Abstract:

The report is about giant false aneurysm of an extracranial part of the left internal carotid artery (ICA) in a patient aged one year and nine months. The reason of the complexity of diagnostics in this case was that the dissection of the ICA with formation of false aneurysm imitated the peritonsillar abscess' clinic. We have not found any descriptions of a similar cases of patients at such an early age in modern literature.

 

References

1.      Nikitina T.G., Kochurkova E.G., Petrosyan K.V., Alekyan B.G. Application of a stent-graft to correct a false aneurysm of the internal carotid artery. Creative. cardiol. 2015; 1: 66 [In Russ].

2.      Kalashnikova L.A. Dissection of arteries, blood supplying the brain, and disorders of cerebral circulation. Ann. clin. and exper. neurology. 2007; 1 (1): 41-49 [In Russ].

3.      Schievink W.I. Spontaneous dissection of the carotid and vertebral arteries. N. Engl. J. Med. 2001; 344: 898— 906. doi.org/10.1056/NEJM200103223441206.

4.      Fullerton HJ, JohnstonSC, Smith WS. Arterial dissection and stroke in children. Neurology, 2001; 57: 1155-1160.

5.      Kalashnikova L.A., Dobrynina L.A., Chechetkin A.O., Dreval M.V., Krotenkova M.V., Zakharkina M.V. Disorders of cerebral circulation in the dissection of the internal carotid and vertebral arteries. Algorithm of diagnostics. Nerve. disease. 2016; 2: 10-15 [In Russ].

6.      Kieslich M., Fiedler A., Heller C. et al. Minor head injury as cause and co-factor in the aetiology of stroke in childhood: a report of eight cases. J. Neurol. Neurosurg. Psychiatry 2002; 73: 13-6.

7.      Seerig M.M., Chueiri L., Jacques J. et alt. Bilateral Peritonsillar Abscess in an Infant: An Unusual Presentation of Sore Throat. Case Rep Otolaryngol. 2017; 2017: 467015. doi.org/10.1155/2017/4670152.

8.      Mazur E, Czerwinska E, Korona-Gtowniak I, Grochowalska A, Koziot-Montewka M. Epidemiology, clinical history and microbiology of peritonsillar abscess. Eur J Clin Microbiol Infect Dis. 2015 Mar; 34(3):549-54. doi.org/10.1007/s10096-014-2260-2.  

 

Abstract:

This article spotlights problems of diagnostic and treatment of rare vascular complication: false aneurysm of transplanted kidney artery We describe a case of successful treatment using stent-assisted aneurysm embolization. Our case is illustrated with ultrasound, computed tomography and angiographic images and 30-day follow-up data.

 

References

1.      Tomilina N., Bikbov B. Sostojanie zamestitel'noj terpapii pri hronicheskoj pochechnoj nedostatochnosti v Rossii v 1998-2011 gg. (po dannym registra Rossijskogo dializnogo obshhestva) [The status of substitutive therapy in chronic renal insufficiency in Russia in 1998-2011. (according to the register of the Russian Dialysis Society).]. Vestnik transplantologii i iskusstvennyh organov. 2015; 17(1):35-58 [In Russ].

2.      Streeter E.H., Little D.M., Cranston D.W. and Morris P.J. The urological complications of renal transplantation: a series of 1535 patients. BJU International. 2002; 90: 627634.

3.      Verstova A.I., Kokov L.S., Parhomenko M.V., Pinchuk A.V. Klinicheskij sluchaj jembolizacii lozhnoj anevrizmy arterii pochechnogo transplantata Materialy VII nauch.-obr. foruma 2015 g [Clinical case of embolization of a false aneurysm of an artery of a transplanted kidney.]. Rossijskij Jelektronnyj Zhurnal Luchevoj Diagnostiki = Russian Electronic Journal of Radiology (REJR). 2015; 5(2) Pril.:231-232[ In Russ].

4.      Matas A.J., Payne W.D., Sutherland DER, et al. 2,500 Living Donor Kidney Transplants: A Single-Center Experience. Annals of Surgery. 2001; 234(2):149-164.

5.      Orlic P., Vukas D., Curuvija D., Markic D., Merlak-Prodan Z., Maleta I., Zivcic-Cosic S., Orlic L., Blecich G., Valencic M., Spanjol J., Budiselic B. Pseudoaneurysm after renal transplantation. Acta Med Croatica. 2008; 62(1):86-9.

6.      Fujikata S., Tanji N., Iseda T., Ohoka H., Yokoyama M. Mycotic aneurysm of the renal transplant artery. Int J Urol. 2006;13: 820e3.

7.      Al-Wahaibi K.N., Aquil S., Al-Sukaiti R., Al-Riyami D., Al-Busaidi Q. Transplant Renal Artery False Aneurysm: Case Report and Literature Review. Oman Medical Journal. 2010; 25(4):306-310.

8.      Bracale U.M., Santangelo M., Carbone F., Del Guercio L., Maurea S., Porcellini M., Bracale G. Anastomotic pseudoaneurysm complicating renal transplantation:treatment options. Eur J Vasc Endovasc Surg. 2010 May; 39(5):565-8.

9.      Dimitroulis D., Bokos J., Zavos G., Nikiteas N.Karidis P., Katsaronis P., et al. Vascular complications in renal transplantation: a single-center experience in 1367 renal transplantations and review of the literature. Transplant Proc. 2009; 41:1609e14.

10.    Burkey S.H., Vazquez M.A., Valentine R.J. De novo renal artery aneurysm presenting 6 years after transplantation: a complication of recurrent arterial stenosis? J Vasc Surg. 2000; Aug;32(2):388-391 10.1067/mva.2000. 106943.

11.    McIntosh B.C., Bakhos C.T., Sweeney T.F., DeNa- tale R.W., Ferneini A.M. Endovascular repair of transplant nephrectomy external iliac artery pseudoaneurysm. Conn Med. 2005; Sep;69(8):465-466.

12.    Bracale U.M., Carbone F., del Guercio L., Viola D., D’Armiento F.P., Maurea S. et al. External iliac artery pseudoaneurysm complicating renal transplantation. Interact Cardiovasc Thorac Surg. 2009. Jun; 8(6):654-660 10.1510/icvts.2008.200386.

13.    Asztalos L., Olvaszto' S., Fedor R., Szabo' L., Bala 'zs G., Luka' cs G. Renal artery aneurysm at the anastomosis after kidney transplantation. Transplant Proc. 2006; 38:2915e8.

 

Abstract:

Company Endogene Pty. Ltd. designd an endoluminal stapler. The purpose of the study was to report the use of device in a living canine model and appraise the technology in a living canine model, and to assess reliability of the delivery system and deployment process, security of the rings discharge and fixation, as well as maintenance of the vessel patency and abcence of thrombotic complications.

 

Reference:

1.     Slonim S.M., Nyman U., Semba C.P., Miller D.C., Mitchell R.S., Dake M.D. Aortic dissection: percutaneous management of ischemic complications with endovascular stents and balloon fenestration. J. Vasc. Surg. 1996; 23:241-253.

2.     Leurs L.J., Buth J., Laheij R.J.F. Long-term results  of endovascular  abdominal  aortic aneurysm treatment with the first generation of commercially available stent grafts. Arch. Surg. 2007; 142: 33-41.

3.     Brewster D.C.,Jones J.E., Chung T.K., Lamuraglia G.M., Kwolek C.J., Watkins M.T., Hodgman T.M., Cambria R.P. Long-term outcomes after endovascular abdominal aortic aneurysm repair. Ann. Surg. 2006; 244 (3): 426-438

 

 

Abstract:

Traumatic lesions of peripheral arteries which lead to pseudoaneurysm formation is the rare pathology Originally surgical treatment was the main method of pseudoaneurysms' treatment. However, now endovascular procedures are preferable as a method such patients' treatment. The case of successful endovascular treatment of posttraumatic pseudoaneurysm of subclavian artery with stent-graft implantation is shown This clinical case report demonstrates main advantages of endovascular method of such location pseudoaneurysms treatment.

 

 

 

Abstract:

Article describes a rare clinical case: a successful endovascular haemostasis of splenic artery arrosive bleeding into pancreatic enteroanastomosis in early postoperative period in patient with chronic postnecrotic pancreatitis.

 

References 

1.    Karmazanovskij G.G. i dr. Anevrizmy visceral'nyh sosudov i arrozionnye krovotechenija v polost’ postnekroticheskih kist podzheludochnoj zhelezy. Zh. Annaly hirurgicheskoj gepatologii [Aneurysms of visceral vessels and arrosive bleeding into postnecrotic cysts of pancreas. Journal «Annals ofsurgical hepatology»]. 2007; 12(2) 85-95[In Russ] .

2.    Alfredo F.T. Acute pancreatitis at the beginning of the 21st century: The state of the art. WorldJ. Gastroenterol. 2009; 28 (15(24)): 2945-2959.

3.    Gubergric N.B. i dr. Sosudistye zabolevanija podzheludochnoj zhelezy i sosudistye oslozhnenija pankreaticheskoj patologii: luchevye, sonograficheskie i morfologicheskie sopostavlenija (obzor literatury). Zh. Medicinskaja vizualizacija [Vascular diseases of pancreas and vascular complications of pancreatic patology: beam-diagnostics, sonographic and morphological comparison. Jornal «Medical Visualisation»]. 2005; 5: 11-21 [In Russ].

4.    Andersson E., D. Ansari, R. Andersson. Major haemorrhagic complications of acute pancreatitis. The British journal of surgery. 2005; 97(9): 1379-84.

5.    De Perrot M., T. Berney, L. Buchler Management of bleeding pseudoaneurysms with pancreatitis. Brit. J. Surg. 1999; 86: 29-32.

6.    Vimalraj V., D.G. Kannan, R. Sukumar. Haemosuccus pancreatitis: diagnostic and therapeutic challenges. HPB. 2009; 4: 345-350.

7.    Kriger A.G., Karmazanovskij G.G., Kokov L.S. Lozhnye anevrizmy arterij bassejna chrevnogo stvola u bol'nyh hronicheskim pankreatitom. Zh. Hirurgija [False aneurysms of truncus coeliacus in patients with crhonic pancreatitis. Journal «Surgery»]. 2008; 12: 85—95 [In Russ].

8.    Sahakian A.B., S. Krishnamoorthy, T.H. Taddei. Necrotizing pancreatitis complicated by fistula and upper gastrointestinal hemorrhage. Clin. Gastroenterol. Hepatol. 2011; 9(7): 66-67.

9.    Vishnjakova M.V. i dr. Diagnostika i jendovaskuljarnoe lechenie psevdoanevrizmy selezenochnoj arterii. Zh. Diagnosticheskaja i intervencionnaja radiologija [Diagnostics and endovascular treatment of splenic artery pseudoaneurysm. Journal «Diagnostic and interventional radiology»]. 2010; 4( 4) 97 - 99 [In Russ].

10.  Tarazov P.G. i dr. Uspeshnaja arterial'naja jembolizacija posttravmaticheskoj psevdoanevrizmy pechenochnoj arterii. Zh. Diagnosticheskaja i intervencionnaja radiologija [Succesful arterial embolization of posttraumatic hepatic artery pseudoaneurysm. Journal «Diagnostic and interventional radiology»]. 2011; 5(3): 93-98 [In Russ].

11.  Tibilov M.A., Bajmatov M.S. Jendovaskuljarnye vmeshatel'stva v lechenii zheludochno-kishechnyh krovotechenij pri zabolevanijah pankreatoduodenal'noj zony. Zh. Diagnosticheskaja i intervencionnaja radiologija [Endovascular treatment of gastrointestinal bleeding in patients with pancreatoduodenal zone diseases. «Diagnostic and interventional radiology»]. 2009; 3(3) 45 - 50 [In Russ].

12.  Kalva S.P., K.Yeddula, S. Wicky. Angiographic intervention in patients with a suspected visceral artery pseudoaneurysm complicating pancreatitis and pancreatic surgery. Arch Surg. 2011; 146(6): 647-652.

13.  Mansueto G. et al. Endovascular treatment of arterial bleeding in patients with pancreatitis. Pancreatology.- 2007; 7(4): 360-369.

14.  Sethi H., P. Peddu, A. Prachalias. Selective embolization for bleeding visceral artery pseudoaneurysms in patients with pancreatitis. Hepatobiliary and pancreatic diseases international. 2007; 9(6): 634-638

 

Abstract:

The aim of this research was to perform preoperative examination of distal arterial flow in patients with popliteal artery aneurysms. We performed 47 open surgery procedures in 38 patients with popliteal artery aneurysms. Patients underwent duplex scanning, CT and angiography Duplex scanning was performed in all cases while CT only in 14 (36,8%) cases. Angiography was performed in 29 (76,3%) cases (43 aneurysms).

We revealed that with the increasing duration of the disease increases the number of aneurysms with thrombus (71,8% vs 28,2%, p<0,05). Accordingly increases the number of patients with distal embolisation: 81,6% diseased shin arteries in patients with popliteal aneurysm vs 46,7% in patients without aneurysm (p<0,05). Therefore the longer aneurysm exists the more cases are complicated. In conclusion angiography still plays important role in diagnostics of popliteal aneurysms and helps to make decision for type of revascularization procedure.

 

Reference

1.    Duffy S.T., Colgan M.P., Sultan S., Moore D.J., Shanik G.D. Popliteal aneurysms: a 10-year experience. Eur. J. Vasc. Endovasc. Surg. 1998; 16: 218-222.

2.    Pulli R., Dorigo W., Troisi N., Innocenti A.A., Pratesi G., Azas L. et al. Surgical management of popliteal artery aneurysms: which factors affect outcomes? J. Vasc. Surg. 2006; 43: 481-487.

3.    Troitsky A.V., Bobrovskaya A.N., Orekhov PJ. et al he successful percutaneous endovascular treatment of ruptured femoral artery’aneurysm. Angiology and vascular surgery, 2005; 11(1): 53-60.

4.    Dent T.L., Lindenauer S.M. Ernst C.B., Fry WJ. Multiple arteriosclerotic arterial aneurysms. Arch. Surg. 1972; 105: 338-344.

5.    Spiridonov A.A., Morozov K.M.. Peripheral arteries aneurysms. Clinical angiology. Edited by prof. Pokrovsky A.V. Meditsina 2004; 262-284.

6.    Antonello M., Frigatti P., Battocchio P., Lepidi S., A.Dallrantonia, G.P.Deriu, Grego F. Endovascular treatment of asymptomatic popliteal aneurysms: 8-year concurrent with open repair. J. Cardiovasc. Surg. 2007; 48: 267-274.

7.    Dawson I., Sie R.B., Van Bockel J.N. Atherosclerotic popliteal aneurysm. Br. J. Surg. 1997; 84: 293-299.

8.    Stiegler H., Mendler G. Prospective study of 36 patients with 46 popliteal artery aneurysms with non-surgical treatment. Vasa. 2002; 31: 43-46.

9.    Carpenter J.P., Barker C.F., Roberts B., Berkowith H.D., Lusk E.J., Perloff L.J. Popliteal artery aneurysms: current management and outcome. J. Vasc. Surg. 1994; 19: 65-72.

10.  Tiellu I.F., Verhoeven E.L., Prins T.R., Post WJ., Hulsebos R.G., van den Dungen J.J. Treatment of popliteal artery aneurysms with the Hemobahn stent-graft. J. Endovasc. Ther. 2003; 10: 111-116.

 

 

Abstract:

Authors present their first 3 cases of thoracoabdominal aneurysm hybrid repair. Endovascular procedure and open surgery were used either simultaneously, or as the steps of reconstruction.

 

References

1.           Crawford E.S., DeNatale R.W. Thoracoabdominal aortic aneurysm: Observations regarding the natural course of disease. J. Vasc. Surg. 1986; 3: 578.

2.           Nienaber C.A., Eagle K.A. Aortic dissection: new frontiers in diagnosis and management: part I: from etiology to diagnostic strategies. Circulation. 2003; 108 (5): 628-635.

3.           Kouchoukos N.T., Dougenis D. Surgery of the thoracic aorta. N. Engl. J. Med.  1997; 336: 1876-1888.

4.           Meszaros I. et al. Epidemiology and clinicopathology of aortic dissection.   Chest. 2000;117: 1271-1278.

5.           Coady M.A. et al. Surgical intervention criteria for thoracic aortic aneurysms. A study of growth rates and complications. Ann. Thorac. Surg. 1999; 67: 1922.

6.           Elefteriades J.A. Natural history of thoracic aortic aneurysms. Indications for surgery and surgical versus nonsurgical risks. Ann. Tho-rac.Surg. 2002; 74: 1877.

7.           Lobato A.C., Puech-Leao P. Predictive factors for rupture of thoracoabdominal aortic aneurysm.J. Vasc. Surg. 1998; 27: 446.

8.           Svensson L.G. et al. Experience with 1509 patients undergoing thoracoabdominal aortic operations.J. Vasc. Surg. 1993 ;17 (2): 357-370.

9.           Bavaria J. et al. Retrograde cerebral and distal aortic perfusion during ascending and thoracoabdominal aortic operations. Ann. Thorac. Surg. 1995; 60 (2): 345-353.

10.       Белов Ю. В., Хамитов Ф. Ф., Генс А. П., Степаненко А. Б. Защита спинного мозга и внутренних органов в реконструктивнойхирургии аневризм нисходящего грудного и торакоабдоминального отделов аорты. Ангиология и сосудистая хирургия. 2001; 7 (4):85-95.

11.       Hagan P.G. et al. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease.JAMA. 2000; 283: 897-903.

12.       FannJ.I. et al. Surgical management of aortic dissection during a 30"year   period. Circulation. 1995; 92 (2): 113-121.

13.       Dake M.D. et al. Endovascular stent-graft placement for the treatment of aortic dissection. New. Eng.J. Med. 1999; 340: 1546-1552.

14.       Buth J. et al. Neurologic complications associated with endovascular repair of thoracic aortic pathology: Incidence and risk factors. Аstudy from the European сollaborators on stent-graft techniques for aortic aneurysm repair  (EUROSTAR)  registry. J.   Vasc.  Surg. 2007; 46 (6): 1103-1111.

15.       Svensson L.G. et al. Experience with 1509 patients undergoing thoracoabdominal aortic operations.J. Vasc. Surg. 1993; 17: 357-370.

16.       Safi H.J. et al.  Distal aortic perfusion and cerebrospinal fluid drainage for thoracoabdominal and descending thoracic aortic repair.        Ten years of organ protection. Ann. Vasc. Surg. 2003; 238: 372-380.

17.       Chiesa R. et al. Spinal   cord   ischemia after elective stent-graft repair of the thoracic aorta. J. Vasc. Surg. 2005; 42: 11-17.

18.       Criado F.J., Clark N.S., Barnatan M.F. Stent graft repair in the aortic arch and descending thoracic aorta: A 4-year experience. J. Vasc. Surg. 2002; 36: 1121-1128.

19.       Najibi S. et al. Endoluminal versus open treatment of descending thoracic     aortic aneurysms.J. Vasc. Surg. 2002; 36: 732-737.

20.       Greenberg R.K. et al. Zenith AAA endovascular graft. Intermediate-term results of the US multicenter  trial. J. Vasc. Surg. 2004; 39: 1209-1218.

 

 

 

Abstract:

Background: balloon angioplasty for coarctation of the aorta (CoA) in teenagers and adults is sometimes limited by significant residual pressure gradient (>20 mm Hg) in cause of vesse «elastic recoil». To avoid this complication intervention cardiologists use self- and balloon-expandable endovascular stents. In this report we demonstrate our experience in such method of aortic coarctation repair.

Materials and methods: in our instituton since December 2008 to Desember 2013 85 teenagers and adult patients were treated by endovascular stent placement to coarctatec aortic segment. The age of patients was 10 to 60 years (mean 20,3+7,4), weight 20 to 90 kgs (mean 53,2+14,6). Mean systolic arterial pressure was 166+7mm Hg. (range 140 to 200), mean systolic pressure gradient (SPG) was 60,6+9,0 mm Hg (range 25 to 85). The mean cross section at baseline of coarctation was 19,6±6,1 mm2 (range 1 to 95). 61 patients had native coarctation and 3 recoarctation after previous surgical repair. In 21 cases coartation was in combination with other cardiac pathology - patent ductus arteriosus (PDA), restrictive VSD, aortric and mitral valve lesions, and coronary vessel pathology Seven patients had hemodynamically significant aortic atresia. We used 20 Palmaz P-4014, 18 Genesis XD PG-2910 (Cordis Jonson & Jonson) and 45 - CP, CP covered stents, one - Intratherapeutic Doublestrut (EV3), and one Advanta V12 (Atrium) covered stent.

Results: 90 stents were implanted in 85 patients. Procedure was successful in all but one cases, one patient with postsurgical recoarctation had residual systolic pressure gradient > 25 mm Hg after stent placement. The peak systolic gradient decreased from a mean value of 60 mm Hg.(range 25 to 85) to a mean 7 mm Hg (range 0 to 25). Systolic blood pressure normalized in 64 cases, twenty one patients require additional drug therapy Coarctation site cross section increased from a mean of 19,6 mm2 to 236,3 mm2. PDA was closed simultaneously with the stenting by coils, and for eleven patients with other cardiac malformations endovascular coarctation repair was as a first step in complex cardiac surgical treatment. In one case of 56 years old male we had acute aortic dissection which was stabilized without surgical intervention. Two patients with complete hemodynamically significant aortic atresia developed stent fracture, which was recognized on CT scan 6 months after procedure. In one case it was treated with covered stent placement. In another patient stent fragment was treated surgically We had three stent migration with their safe deployment in thoracic aorta and followed by successful repair of aortic narrowing with additional stent.

Conclusion: stent implantation for aortic coarctation is safe and effective procedure. The early and intermediate term result are encouraging, with relatively low incidence of complication in teenagers and adult patients. 

 

References

1.     Campbell М.: Natural history of coarctation of the aorta. Br. Heart .J. 1970; 32: 633.

2.     Carr J. The Results of Catheter-Based Therapy Compared With Surgical Repair of Adult Aortic Coarctation. J. Am. Coll. Cardiol. 2006, 47: 1101-1107.

3.     Mullen M.S. Coarctation of the aorta in adults: do we need surgeons? Heart. 2003; 89: 3-5.

4.     Forbes T.J. Procedural Results and Acute Complications in Stenting Native and Recurrent Coarctation of the Aorta in Patients Over 4 Years of Age A Multi-Institutional Study. Cath. and Cardiovascular. Interventions. 2007; 70: 276-285.

5.     Golden А^. Coarctation of the Aorta: Stenting in Children and Adalts. Cath. and Cardiovascular Interventions. 2007; 69: 289-299.

6.     Chessa M., Carrozza M., Butera G., Piazza L., Carminati M. Results and mid-long-term follow-up of stent implantation for native and recurrent coarctation of the aorta. European Heart Journal. 2005; 26: 2728-2732.

7.     Rosenthal E. Stent implantation for aortic coarctation: the treatment of choice in adults? J. Am. Coll. Cardiol. 2001;38: 1524-1527.

8.     Beaton A.Z. Relation of Coarctation of the Aorta to the Occurrens of Ascending Aortic Dilation in Children and Young Adults With Bicuspid Aortic Valves. Am. J. Cardiol. 2009; 103: 266-270.

9.     Qureshi S.A. Stenting in aortic coarctation and transverse arch/isthmus hypoplasia; Percutaneous Interventions for Congenital Heart Disease, 2007: 475-489.

10.   Duke C., Rosenthal E. and Qureshi S.A. The efficacy and safety of stent redilatation in congenital heart disease. Heart. 2003;89: 905-912.

11.   Basil Vasilios Thanopoulos, Nicholaos Eleftherakis, Konstadinos Tzanos, Stent Implantation for Adult Aortic Coarctation. J. Am. Coll. Cardiol. 2008; 52: 1815-1816. 

 

 

Abstract:

Aim: was to evaluate possibilities and advantages of endovascular treatment of intracranial aneurysms (IA) and arteriovenous malformations (AVM) using three-dimensional navigation (3D-roadmapping).

Materials and methods: during 2010-2013 years 103 embolizations of IA and AVM ir 88 patients were performed in our angiography department. Embolizations of IA were managed by metallic detachable coils, embolizations of AVM - by Histoacryl : Lipiodol glue composition. 3D-roadmapping technique was applied for guidance of endovascular tools in cerebral arteries anc catheterization the IA cavity and AVM-feeding arteries during the procedure. 3D-roadmapping technique is based on creation of composite images that consist of two-dimensional fluoroscopic views superimposed on virtual three-dimensional model of the vessel.

Results: endovascular interventions with 3D-roadmapping were performed in 65(63%) cases. In 49 (75%) cases we used 3DRA data to create three-dimensional model of cerebral vessels and in 16 (25%) cases - CT-angiography data. Complex algorithm of diagnosis and endovascular treatment of IA and AVM using 3D-roadmapping was introduced.

Conclusion: our experience of the endovascular embolization of IA and AVM with 3D-roadmapping convincingly showed that usage of this technique is possible and effective. In comparison with two-dimensional navigation there was a tendency in reduction of the effective exposure dose, also there was a statistically significant decrease of amount of contrast material , and of time for superselective catheterization of AVM-feeding arteries and IA cavity. 

 

References

1.     Becske T., Jallo G.I. Chief Editor: Lutsep H.L. Subarachnoid Hemorrhage. Updated: Oct 20, 2011 Available at: http://www.emedicine.medscape.com.

2.     Krylov V.V., Prirodov A.V., Petrikov S.S. Netravmaticheskoe subarahnoidal'noe krovoizlijanie: diagnostika i lechenie [Nontraumatic subarachnoid hemorrhage: diagnosis and treatment.]. Consilium Medicum. Bolezni serdca i sosudou 2008; 1: 14-18 [In Russ].

3.     Методические Указания 2.6.1.2944-11 «Контроль эффективных доз облучения пациентов при проведении медицинских рентгенологических исследований». Metodicheskie Ukazanija 2.6.1.2944-11 «Kontrol jeffektivnyh doz obluchenija pacientov pri provedenii medicinskih rentgenologicheskih issledovanij»[«Control of effective patient dose in medical X-ray examinations»] [In Russ].

4.     JohnstonS.C., Higashida R.T., Barrow D.L., Caplan L.R., et al: Recommendations for the endovascular treatment of intracranial aneurysms. A statement for health care professionals from the Committee on Cerebrovascular Imaging of the American Heart Association Council on Cardiovascular Radio. Выходные данные?

5.     Debrun G.M., Aletich V.A., Kehrli P., et al: Selection of cerebral aneurysms for treatment using Guglielmi detachable coils: The preliminary University of Illinois at Chicago experience. Neurosurgery. 1998;43:1281-1295.

6.     Debrun G.M., Aletich V.A., Kehrli P., Misra M., Ausman J.I., Charbel F. Selection of cerebral aneurysms for treatment using Guglielmi detachable coils: the preliminary University of Illinois at Chicago experience. Neurosurgery 1998;43:1281-1295.

7.     Fernandez Zubillaga A., Guglielmi G., Vinuela F.. Duckwiler G.R. Endovascular occlusion of intracranial aneurysms with electrically detachable coils: correlation of aneurysm neck size and treatment results. AJNR Am. J. Neuroradiol. 1994;15: 815-820.

8.     Svistov D.V., Pavlov O.A., Kandyba D.V., Nikitin A.I., Savello A.V., Landik S.A., Arshinov B.V.. Znachenie vnutrisosudistogo metoda v lechenii pacientov s anevrizmaticheskoj bolezn'ju golovnogo mozga [Meaning of intravascular method in patients with aneurysmal disease brain.]. Nejrohirurgija. 2011; 1: 21-28 [In Russ].

9.     Gallas S., Januel A.C., Pasco A., Drouineau J., Gabrillargeus J., Gaston A., Cognard C., Herbreteau D. Long-term follow-up of 1036 cerebral aneurysms treated by bare coils: a multicentric cohort treated between 1988 and 2003. J. Amer. J. Neuroradiol. 2009; 30(10): 1986-1992. 

 

Abstract:

Background and purpose: flow-diverting devices are increasingly used for the treatment of giant and wide neck cerebral aneurysms. The aim of the research was to evaluate the feasibility of computed tomography angiography CTA in the postoperative evaluation of aneurysms treatec with Pipeline Embolization Device (PED).

Materials and methods: fifteen patients with 19 aneurysms treated by total of 17 PED were examined by means of CTA. Postprocessing of CTA acquisitions were done at workstation using maximum intensity projections, multiplanar reformations, curved planar reformations and volume rendering of PED region and other intracranial arteries. The position of PED and dergree of aneurysm occlusion were evalluated.

Results: CTA follow-up of at least 26 months demonstrated complete occlusion of aneurysms treated with the PED in 9 cases (50%). There were 2 cases (11,1%) of proximal stent migration and 2 cases (11,1%) of stent narrowing due to incomlete expansion. Flow reduction was observed in 4 aneurysms (22,2%). CTA was accurate in determining the position of PED and evaluating the patency of aneurysm.

Conclusions: CTA can be used as a reliable tool for postoperative evaluation of aneurysms treated with PED defining the stent position and aneurysmal flow reduction. Postprocessing using curved planar reformations with window width 1000-2500 and level 600-800 is optimal for stent visualization.  

 

References

1.     Suzuki S., Tateshima S., Jahan R., Duckwiler G.R., Murayama Y, Gonzalez N.R., V^uela F. Endovascular treatment of middle cerebral artery aneurysms with detachable coils: angiographic and clinical outcomes in 115 consecutive patients. Neurosurgery. 2009; 64(5): 876-88.

2.     V^uela F., Duckwiler G., Mawad M. Guglielmi detachable coil embolization of acute intracranial aneurysm: perioperative anatomical and clinical outcome in 403 patients. J. Neurosurgery. 2008; 108(4): 832-9.

3.     Kallmes D.F., Ding YH., Dai D., Kadirvel R., Lewis D.A., Cloft H.J. A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke. 2007; 38(8): 2346-52.

4.     Lylyk P, Miranda C., Ceratto R., et al. Curative endovascular reconstruction of cerebral aneurysms with the Pipeline embolization device: the Buenos Aires experience. Neurosurgery. 2009; 64: 632- 42, discussion 642-43, quiz N636.

5.     Cloft H.J., Joseph G.J., Dion J.E. Risk of cerebral angiography in patients with subarachnoid hemorrhage, cerebral aneurysm, and arteriovenous malformation: a meta-analysis. Stroke. 1999; 30(2): 317-20.12.

6.     Mayberg M.R., Batjer H.H., Dacey R., Diringer M., Haley E.C., Heros R.C., Sternau L.L., Torner J., Adams H.P Feinberg W. et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 1994; 25(11): 2315-28.

7.     Min J.K., Swaminathan R.V., Vass M., Gallagher S., Weinsaft J.W. High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography. Cardiovasc. Comput. Tomogr. 2009; 3(4): 246-51.

8.     Sun Z., Davidson R., Lin C.H. Multi-detector row CT angiography in the assessment of coronary in-stent restenosis: a systematic review. Eur. J. Radiol. 2009; 69(3): 489-95.

9.     Szikora I., Guterman L.R., Wells K.M., Hopkins L.N. Combined use of stents and coils to treat experimental wide-necked carotid aneurysms: preliminary results. AJNR Am. J. Neuroradiol. 1994; 15(6):1091-102.

10.   Ternovoy S.K., Akchurin R.S., Fedotenkov I.S., Veselova T.N., Nikonova M.E., Shiryaev A.A. Neinvazivnaya shuntografiya metodom mul’tispiral’noy komp’yuternoy tomografii. REJR. 2011; 1(1): 26-32 [In Russ].

11.   Lieber B.B., Stancampiano A.P, Wakhloo A.K. Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity. Ann. Biomed. Eng. 1997; 25(3): 460-9.

12.   Szikora I., Berentei Z., Kulcsar Z., et al. Treatment of intracranial aneurysms by functional reconstruction of the parent artery: the Budapest experience with the Pipeline embolization device. AJNR Am. J. Neuroradiol. 2010; 31:1139-47.

13.   McAuliffe W., Wycoco V., Rice H., Phatouros C., Singh T.J., Wenderoth J. Immediate and midterm results following treatment of unruptured intracranial aneurysms with the pipeline embolization device. AJNR Am. J. Neuroradiol. 2012; 33(1):164-70.

14.   Saatci I., Yavuz K., Ozer C., Geyik S., Cekirge H.S. Treatment of intracranial aneurysms using the pipeline flow-diverter embolization device: a single-center experience with long-term follow-up results. AJNR Am. J. Neuroradiol. 2012; 33(8):1436-46.

15.   Deutschmann H.A., Wehrschuetz M., Augustin M., Niederkorn K., Klein G.E. Long-term follow-up after treatment of intracranial aneurysms with the Pipeline embolization device: results from a single center. AJNR Am. J. Neuroradiol. 2012; 33(3): 481-6. 

 

Abstract:

Acute traumatic aortic rupture is associated with extremely high mortality and requires urgent diagnosis and treatment.

Materials and methods: patient P, 33 years 28.12.2013, fall from a height of 5 floors. On the day of admittion to hospital he was hospitalized to the reanimation department with a diagnosis of «multiple trauma, traumatic shock». For nearest hours after admission MSCT of head, neck, chest organs, abdomen and pelvis were performed.

Results: in series of images of the head and neck revealed multiple fractures of facial bones anc skull base, hemo-sinus.

MSCT chest without contrast enhancement: expanding boundaries revealed the presence of the upper mediastinum content density of 65 Hounsfield units (Ed.N) around the arch and descending aorta, in tissues of the posterior mediastinum. Volume of about 35 cm3 - in the pericardial cavity, ribs on the left with a displacement of fragments, left-sided hemothorax (260 cm3). During examination of abdomen and pelvis in the native phase: in subhepatic space in the liver portal, volume of about 50 cm3 with density of blood multiple fractures of the pelvis. CT with contrast-enhanced bolus revealed uneven expansion in the thoracic aorta isthmus length of 60 mm, with the presence at this level of linear structures intraluminal wall surface (wall laceration), and a narrow zone of extravasation of the contrast agent on the inner contour of the aorta. At the lever portal detected delimited zone of active extravasation of contrast material as a result of breaking its proper hepatic artery which is essentially as a thrombosis of pseudoaneurysm with zone of thrombosis around the periphery and subcapsular rupture of the left lobe of the liver

Ultrasound examination - left-sided hydrothorax, echo signs of free fluid in the abdominal cavity, liver hematoma in the area of the portal, diffuse changes in kidneys («shock» kidney).

Patient underwent primary surgical dressing of face wounds, osteosynthesis of right femur with external fixation device (EFD). Endoprothesis of descending thoracic aorta was performed 29.12.2013. After implantation of the prothesis, celiacography was performed, in which in liver portal, in the place of proper hepatic artery division to the right and left hepatic artery - large-size false aneurysm was revealed.

CT scanning, performed on the 5th day after aortic replacement: there are signs of segmental atelectasis of the lower lobe of the left lung, minimum infiltrative changes in fiber anterior mediastinum, hematoma of the posterior mediastinum (31 cm3. Previously was 191 cm3), and hemopericardium (15 cm3 compared with 35 cm3)

In the process of dynamic observation, it was found that up to 30 days, false aneurysm of proper hepatic artery increased in size, in this regard, the patient was operated on 24.01.14.

Follow-up CT scan with contrast enhancement: branches of the hepatic artery are well visualized, artery aneurysm is not defined

12.02.14, was the dismantling of EFD and manufactured fixation of the right femur pin. After 65 days after the injury and the start of treatment the patient was discharged under the supervision of the surgeon and cardiologist in the community.

 

References

1.          Andreeva T.M. Travmatizm v Rossiyskoy Federatsii na osnove dannykh statistiki FGU «TsITO im. N.N. Priorova Rosmedtekhnologiy». [Traumatism in the Russian Federation on the basis of statistical data of FGU «TsITO im. N.N. Priorova Rosmedtekhnologiy»]. Electronic scientific journal «Social aspects of health of the population». 2010; № 4(16). [In Russ]

2.         Kolesnikov E.S. Kliniko-epidemiologicheskaya kharakteristika tyazheloy sochetannoy kranio-torakalnoy travmy v krupnom promyshlennom tsentre. Avtoreferat. Diss. kand. tekh. nauk [The kliniko-epidemiologic characteristic of a severe combined kranio-thoracic trauma in the large industrial center: Abstract Dr. techn.sci.diss.]. Omsk. 2009: 23. [In Russ].

3.          Asif Huda Ansari, Ahmed S. Ahmed, Navin P. Lal. Traumatic aortic injury: a case report. Turkish Journal of Trauma & Emergency Surgery. 2009;15(6):621-623.

4.         Victor X. Mosquera, Milagros Marini, Javier Muniz et al. Blunt traumatic aortic injuries of the ascending aorta and aortic arch: A clinical multicentre study. Injury, Int. J. Care Injured. 2013; (44): 1191-1197.

5.         Kaavya N. Reddy, Tim Matatov, Linda D. Doucet et al. Grading system modification and management of blunt aortic injury. Chinese Medical Journal. 2013;126 (3):442-445.

6.         Дж. Э. Тинтиналли, РЛ. Кроум, Э. Руиз. Неотложная медицинская помощь. Перевод с англ. В.И. Кандрора, М.В. Неверовой, А.В. Сучкова, А.В. Низового, Ю.Л. Амченкова; М.:Медицина. 2001; 334.

7.         Dzh. E. Tintinalli, R.L. Kroum, E. Ruiz. Neotlozhnaya meditsinskaya pomoshch'. Perevod s angl. V.I. Kandrora, M.V. Neverovoy, A.V. Suchkova, A.V. Nizovogo, Yu.L. Amchenkova [Emergency medicine]. Moscow. 2001: 334. [In Russ].

8.      Jun Woo Cho, M.D., Oh Choon Kwon, M.D., Sub Lee, M.D., Jae Seok Jang, M.D. Traumatic Aortic Injury: Singlecenter Comparison of Open versus Endovascular Repair. Korean J. Thorac. Cardiovasc. Surg. 2012;45:390-395.

9.      Estrera A.L., Miller C.C., Salinas-Guajardo G., Coogan S.M. et al. Update on blunt thoracic aortic injury: 15-year single-institution experience. J. Thorac. Cardiovasc. Surg. 2012; doi: 10.1016/j.jtcvs.2012.11.074. [Epub ahead of print].

10.    O’Conor C.E. Diagnosing traumatic rupture of the thoracic aorta in the emergency department. Emerg. Med. J. 2004; 21:414-419.

11.     Panagiotis N. Symbas, Andrew J. Sherman, Jeffery M. Silver et al. Traumatic Rupture of the Aorta Immediate or Delayed Repair? Ann. Surg. Jun. 2002; 235(6): 796-802.

12.     Троицкий А.В., Хабазов РИ., Лысенко Е.Р, Беляков Г.А., Грязнов О.Г., Соловьева Е.Д., Азарян А.С. Первый опыт гибридных операций при торакоабдоминальных аневризмах аорты. Диагностическая и интервенционная Радиология. 2010; 4(1): 53-66.

13.     Troickij A.V., Habazov R.I., Lysenko E.R., Beljakov G.A., Grjaznov O.G., Solov'eva E.D., Azarjan A.S. Pervyj opyt gibridnyh operacij pri torakoabdominal'nyh anevrizmah aorty[Thoracoabdominal aneurysms: first experience of operation]. Diagnosticheskaja i intervencionnaja Radiologija. 2010; 4(1): 53-66 [In Russ].

14.     Woodring J.H. The normal mediastinum in blunt traumatic rupture of the thoracic aorta and brachiocephalic arteries. J. Emerg. Med. 1990; 8: 467-476.

 

 

Abstract:

Case report of successful endovascular treatment of pseudoaneurysm of common hepatic artery (patient underwent laparoscopic gastrectomy, cholecystectomy with lymph node dissection in treatment of gastric adenocarcinoma) is presented.

Materials and methods: patient E., 61 year. In anamnesis: ulcer disease for the period of 8 years. In 2013, gastric adenocarcinoma T4N0M0 had been revealed and in January 2014 patient underwent laparoscopic gastrectomy, cholecystectomy with lymph node dissection D2. Postoperative period was complicated by thrombosis of left branch of portal vein, external biliary fistula, left subdiaphragmatic abscess with further drainage. During CT-angiography - adenoma of left adrenal gland and aneurysm of proper hepatic artery were revealed. Selective angiography revealed aneurysm of common hepatic artery in middle third, sized 10x20 mm. Patient underwent double-staged treatment. Primary patient underwent embolization of aneurysm with Azur-18 coils, but aneurysm cavity had incomplete thrombosis. As a second stage patient underwent stent-graft implantation in hepatic artery.

Results: stent implantation was uncomplicated, aneurysm was excluded from blood flow. Patient was discharged in good condition, without any additional operation. Control angiography was performed in 3 months and thrombosis of stent with collateral blood flow were revealed. 

 

References

1.     Wagner W.H., Allins A.D., Treiman R.L., Cohen J.L., Foran R.F., Levin PM., Cossman D.V. Ruptured visceral artery aneurysms. Ann. Vasc. Surg. 1997 Jul; 11(4): 342-347.

2.     Hossain A., Reis E.D., Dave S.P, Kerstein M.D., Hollier L.H. Visceral artery aneurysms: experience in a tertiary-care center. Am. Surg. 2001 May;67(5):432-7.

3.     Kasirajan K., Greenberg R.K., Clair D., Ouriel K. Endovascular management of visceral artery aneurysm. J. Endovasc. Ther. 2001 Apr; 8(2):150-5.

4.     Gabelmann A., Gorich J., Merkle E.M. Endovascular treatment of pseudoaneurysm of the common hepatic artery with intra-aneurysmal glue (N-butyl 2-cyanoacrylate) embolization. Cardiovasc. Intervent. Radiol. 2007 Sep-Oct; 30(5):999-1002.

5.     Grego F.G., Lepidi S., Ragazzi R., Iurilli V., Stramanа R., Deriu G.P Visceral artery aneurysms: a single center experience. Cardiovasc. Surg. 2003 Feb;11(1):19-25.

6.     Garg A., Banait S., Babhad S., Kanchankar N.. Nimade P, Panchal C. Endovascular treatment of visceral artery aneurysms. J. Endovasc. Ther. 2002 Feb;9(1): 38-47.

7.     Sakai H., Urasawa K., Oyama N., Oabatake A., Successful covering of a hepatic artery aneurysm with a coronary stent graft. Cardiovasc. Intervent. Radiol. 2004 May- Jun;27(3):274-7.

8.     Jenssen G.L., Wirsching J., Pedersen G., Amundsen S.R., Aune S., Dregelid E., Jonung T., Daryapeyma A., Lax- dal E. Treatment of a hepatic artery aneurysm by endovascular stent-grafting. Cardiovasc. Intervent. Radiol. 2007 May-Jun;30(3):523-5.

9.     Suhny Abbara, T. Gregory Walker, Steven G. Imbesi. Diagnostic imaging, cardiovascular. First edition, 2008; II, 5: 62-65.

10.   Jecko V., Benali L., Vignes J.F., Vignes J.R. Hepatic artery aneurysm rupture after lumbar stenosis surgery. Medico-legal thinking. France Neurochirurgie. 2014 Feb- Apr;60(1-2):38-41.

11.   Fatic N., Music D., Zornic N., Radojevic N. Hepatic artery aneurysm developing after Billroth's operation. Ann. Vasc. Surg. 2014 May; 28(4):1033.e1-3.

12.   Asai K., Watanabe M., Kusachi S., Matsukiyo H., Saito T., Kodama H., Enomoto T., Nakamura Y, Okamoto Y, Saida Y, lijima R., Nagao J. Successful treatment of a common hepatic artery pseudoaneurysm using a coronary covered stent following pancreatoduodenectomy: report of a case. Surg. Today. 2014 Jan; 44(1):160-5.

13.   Lu PH., Zhang X.C., Wang L.F., Chen Z.L., Shi H.B. Stent graft in the treatment of pseudoaneurysms of the hepatic arteries. ^ina Vasc. Endovascular Surg. 2013 Oct; 47(7):551-4.

14.   Suvorova U.V., Tarazov P.G., Polikarpov A.A., Balahin P.V., Polehin A.S. Stentirovanie obschey pechenochnoy i verhney bryzheechnoy arterii dlia ostanovki massivnogo arterialnogo krovotechenia [Stenting of common hepatic artery and superior mesenteric artery for stopping of massive arterial bleeding.] Mezhdunarodniy zhurnal interventsionnoy kardioangiologii. 2013; 35: 73 [In Russ].

15.   Kokov L.S., Cygankov V.N., Shutihina I.V., Zjatenkov A.V. Implantacija samoraskryvajushhihsja stentov-graftov v lechenii lozhnyh anevrizm selezenochnoj arterii [Implantation of self-expanding stent-graft in treatment of pseudoaneurysm of splenic artery]. Diagnosticheskaja i intervencionnaja radiohgija. 2013; 7(1): 75-82 [ In Russ].

16.  Sundeep Punamia, Singapore Transhepatic arterial cannulation and embolisation of hepatic artery pseudoaneurism. poster report frome CIRSE 2014, Glasgow, UK.

 

Abstract:

In this study we have analyzed early and long-term results of endovascular abdominal aneurysm repair (EVAR) in the Department of cardio-vascular surgery of «Russian Cardiology Research anc Production Complex».

Material and methods: research includes 164 patients (February 2009-November 2015) with abdominal aortic aneurysm (AAA), who underwent endovascular abdominal aneurysm repair (EVAR), also with difficult anatomy Patients were operated with basic methodics and also hybrid techniques («chimney», «octopus», fenestrated and branched devices).

Results: 30-day mortality rate accounted for 1,2%, all mortality was 3%.

 

References

1.      Nacional'nye rekomendacii po vedeniju pacientov s anevrizmami brjushnoj aorty 2011[National recommendations on treatment of patients with aneurysm of abdominal aorta]. Pod. red. A.V. Pokrovskogo [In Russ].

2.      Klinicheskaja angiologija: rukovodstvo dlja vrachej [Clinical angiology: guide-book fo physicians]. Pod red. A. V. Pokrovskogo. v 2-h tomah. T. 2. M.: Medicina, 2004 [In Russ].

3.      Abugov S.A., Belov Ju.V., Pureckij M. V., Saakjan Ju.M., Poljakov R.S., Hovrin V.V., Strucenko M.V. Sravnitel'nye rezul'taty lechenija anevrizm brjushnogo otdela aorty jendovaskuljarnym i hirurgicheskim metodom [Comparative results of treatment of abdominal aorta aneurysms with endovascular and surgical methods]. Kardiologija i serdechno-sosudistaja hirurgija. 2011; 2: 27-31 [In Russ].

4.      Sweet M.P., Fillinger M.F., Morrison.T.M., Abel D. The influence of gender and aortic aneurysm size on eligibility for endovascular abdominal aortic aneurysm repair. J. Vascular Surg. 2011; 54:931-7.

5.      Arko F.R., Filis K.A., Seidel S.A., Gonzalez J., Lengle S.J., Webb R., et al. How many patients with infrarenal aneurysms are candidates for endovascular repair? The Northern California experience. J. EndovascTher. 2004;11:33-40.

6.      Armon M.P., Yusuf S.W., Latief K., Whitaker S.C., Gregson R.H., Wenham P.W., et al. Anatomical suitability of abdominal aortic aneurysms for endovascular repair. Br. J. Surg. 1997;84:178-80.

7.      Carpenter J.P., Baum R.A., Barker C.F., Golden M.A., Mitchell M.E., Velazquez O.C., et al. Impact of exclusion criteria on patient selection for endovascular abdominal aortic aneurysm repair. J. Vasc. Surg. 2001;34:1050-4.

8.      Elkouri S., Martelli E., Gloviczki P., McKusick M.A., Panneton J.M., Andrews J.C., et al. Most patients with abdominal aortic aneurysm are not suitable for endovascular repair using currently approved bifurcated stent-grafts. Vasc. Endovascular. Surg. 2004;38:401-12.

9.      Moise M.A., Woo E.Y, Velazquez O.C., Fairman R.M., Golden M.A., Mitchell M.E., et al. Barriers to endovascular aortic aneurysm repair: past experience and implications for future device development. Vasc. Endovascular. Surg. 2006;40:197-203.

10.    Schumacher H., Eckstein H.H., Kallinowski F., Allen-berg J.R. Morphometry and classification in abdominal aortic aneurysms: patient selection for endovascular and open surgery. J. Endovasc. Surg. 1997;4:39-44.

11.    Mehta M., Byrne W.J., Robinson H., Roddy S.P., Paty P.S., Kreienberg P.B., et al. Women derive less benefit from elective endovascular aneurysm repair than men. J. Vasc. Surg. 2010;55:906-13.

12.    AbuRahma A.F., Campbell J., Stone P.A., et al. The correlation of aortic neck length to early and late outcomes in endovascular aneurysm repair patients. J. Vasc. Surg. 2009;50:738-748.

13.    Moulakakis K. G., Mylonas S. N., Avgerinos E. et al.The chimney graft technique for preserving visceral vessels during endovascular treatment of aortic pathologies J. Vasc. Surg. 2012; 55(5): 1497-1503.

14.    Aburahma A.F., Campbell J.E., Mousa A.Y, et al. Clinical outcomes for hostile versus favorable aortic neck anatomy in endovascular aortic aneurysm repair using modular devices. J. Vasc. Surg. 2011;54:13-21. 

 

 

Abstract:

Backgroud: endovascular implantation of the aortic stent-graft is a method of choice in treatment of aneurysms of the infrarenal abdominal aorta, especially in patients with high surgical risk.This strategy is characterized as less in-hospital complications, shorter in-hospital stay All these circumstances show some advantages of endovascular treatment compared with traditional «open» surgery. Besides that, there are some limitations for aortic endoprosthesis implantation, including short or conical proximal neck, severe angulation of aneurysmatic neck and tortuosity of arteries, insufficient diameter of iliac-femoral segment arteries for stent-graft delivery

Materials and methods: we report two clinical cases of successsful implantation of novel stent-graft OVATION PRIME in patients with adverse anatomy, precisely small diameter of crossing profile and original technology of proximal fixation of endoprosthesis.

Results: the use of innovative models of stent-grafts allows to proceed aortic endoprosthesis implantation with minimal risk of complications in certain patients with adverse vascular anatomy, who were previously deemed unsuitable for endovascular treatment.


References

1.     Jackson R.S., Chang D.C. Comparison of long-term survival after open vs endovascular repair of intact abdominal aortic aneurysm among Medicare beneficiaries. JAMA. 2012; 307: 1621-1628.

2.     Logevrove R.E., Javid M., Magee T.R., Galland R.B. A meta-analysis of 21,178 patient undergoing open or endovascular repair of abdominal aortic aneurysm. Br. J. Surg. 2008; 95:677-684.

3.     Brewster D.C., Cronenwett J.L., Hallett J.W. Jr, Johnston K.W., Krupski W.C., Matsumura J.S. Guidelines for the treatment of abdominal aortic aneurysms. Report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery. J. Vasc.Surg. 2003;37:1106-17.

4.     Greenhalgh R.M., Brown L.C., Powell J.T., Thompson S.G., Epstein D., Sculpher M.J. Endovascular versus open repair of abdominal aortic aneurysm. N. Engl. J. Med. 2010;362:1863-71.

5.     Lederle F.A., Freischlag J.A., Kyriakides T.C., Padberg F.T. Jr, Matsumura J.S., Kohler T.R., et al. Outcomes following endovascular vs open repair of abdominal aortic aneurysm: a randomized trial. JAMA. 2009; 302:1535-42.

6.     Agency for Healthcare Research and Quality. Healthcare Cost and Utilization Project (HCUP). Available at: http://ahrg.gov/data/hcup/. Accessed September 26, 2012.

7.     Arko F.R. Filis K.A., Seidel S.A., Gonzalez J., Lengle S.J., Webb R., et al. How many patients with infrarenal aneurysms are candidates for endovascular repair? The Northern California experience. J. Endovasc Ther. 2004;11:33-40.

8.     Armon M.P., Yusuf S.W. Latief K., Whitaker S.C., Gregson R.H., Wenham P.W., et al. Anatomical suitability of abdominal aortic aneurysms for endovascular repair. Br. J. Surg. 1997;84:178-80.

9.     Carpenter J.P., Baum R.A, Barker C.F., Golden M.A. Mitchell M.E., Velazquez O.C., et al. Impact of exclusion criteria on patient selection for endovascular abdominal aortic aneurysm repair. J. Vasc.Surg. 2001;34: 1050-4.

10.   Elkouri S., Martelli E., Gloviczki P., McKusick M.A. Panneton J.M., Andrews J.C., et al. Most patients with abdominal aortic aneurysm are not suitable for endovascular repair using currently approved bifurcated stent-grafts. Vasc. Endovascular. Surg. 2004;38:401-12.

11.   Moise M.A., Woo E.Y, Velazquez O.C., Fairman R.M., Golden M.A., Mitchell M.E., et al. Barriers to endovascular aortic aneurysm repair: past experience and implications for future device development. Vasc. Endovascular. Surg. 2006;40:197-203.

12.   Schumacher H., Eckstein H.H., Kallinowski F., Allenberg J.R. Morphometry and classification in abdominal aortic aneurysms: patient selection for endovascular and open surgery. J. Endovasc.Surg. 1997;4:39-44.

13.   Mehta M., Byrne W.J., Robinson H., Roddy S.P, Paty PS., Kreienberg P.B., et al. Women derive less benefit from elective endovascular aneurysm repair than men. J. Vasc. Surg. 2010;55:906-13.

14.   Morrison T., Fillinger M., Meyer C., et al. Gender disparities in endovascular treatment options for infrarenal abdominal aortic аneurysms. http://www.fda.gov/downloads/MedicalDevices/NewsEvents/Workshops Conferences/UCM359044.pdf. Published June 25, 2013. Accessed June 20, 2014.

15.   AbuRahma A.F., Campbell J., Stone PA., et al. The correlation of aortic neck length to early and late outcomes in endovascular aneurysm repair patients. J. Vasc. Surg. 2009;50:738-748.

16.   Aburahma A.F., Campbell J.E., Mousa A.Y, et al. Clinical outcomes for hostile versus favorable aortic neck anatomy in endovascular aortic aneurysm repair using modular devices. J. Vasc.Surg. 2011;54:13-21.

17.   Sweet M.P, Fillinger M.F., MorrisonT.M., Abel D. The influence of gender and aortic aneurysm size on eligibility for endovascular abdominal aortic aneurysm repair. J. Vascular Surg. 2011; 54:931-7. 

 

 

Abstract:

Aim: was to evaluate efficiency of stents-grafts in treatment of cerebral aneurysms.

Materials and methods: for the period of 2001-2012 implantation of stent-grafts was performedm 10 patients with cerebral aneurysms. Indications for implantation: huge or giant aneurysms; wide«neck» of aneurysm; difficult localization for neurosurgical techniques; absence of significant tortuosity of artery that could interfere successful stent delivery All patients underwent examination:

MSCT-angiography, MRI, cerebral angiography To predict possible stent thrombosis we performed angiographic tests with pinching of pathological artery and contrasting of opposite artery Then we assessed blood-flow of anterior and posterior communicating arteries and also changes in neurological status. Unsatisfactory condition of collateral blood-flow - was not a contraindication for stenting. In 8 patient, aneurysms were localized in internal carotid artery, and in 2 patients in the vertebrobasilar artery In 3 cases implantation of stent-graft was proceeded in acute period of hemorrhage; that caused late disaggregant therapy (immediately after implantation, drugs were injected through nasogastric tube instead of 4-5 days of preoperative treatment).

Results: exclusion of the aneurysm from the blood-flow was reached 100% of cases. In one case, implantation of micro-coils was necessary due to inability to cover the whole neck of the aneurysm because of tortuosity of artery In 1 case we had thrombosis of stent in vertebral artery with spreading of thrombosis on basilar artery with development of ischemic stroke and further death.

Conclusion: use of stent-grafts for exclusion of huge and giant aneurysms from cerebral blood- flow is a highly effective method.

 

References

1.     Zeb M., McKenzie D.B., Scott P.A., Talwar S. Treatment of coronary aneurysms with covered stents: a review with illustrated case. J. Invasive Cardiol. 2012; 24 (9): 465-469.

2.     Briguori C., Nishida T., Anzuini A. et al. Emergency polytetrafluoroethylene-covered stent implantation to treat coronary ruptures. Circulation. 2000; 102 (25): 30283031.

3.     Saatci I,.Cekirge H.S., Ozturk M.H. et al. Treatment of internal carotid artery aneurysms with a covered stent: experience in 24 patients with midterm follow-up results. AJNR Am. J. Neuroradiol. 2004; 25 (10): 1742-1749.

4.     Hirurgija anevrizm golovnogo mozga. V 3 tomah. T. 1. Pod red. V.V. Krylova [Brain aneurysms surgery. In three volumes. Vol. 1. Edited by V.V. Krylov]. Moscow. 2012; 432S [In Russ].

5.    Tissen T.P., Jakovlev S.B. Bocharov A.V. Buharin E.Ju. Ispol'zovanie stent-grafta v jendovaskuljarnoj nejrohirurgii. Voprosy nejrohirurgii im. N.N. Burdenko [The use of stent-graft in endovascular neurosurgery]. 2006; 2: 53-56. [In Russ].

6.     Vulev I., Klepanec A., Bazik R. et al. Endovascular treatment of internal carotid and vertebral artery aneurysms using a novel pericardium covered stent. Interv. Neuroradiol. 2012; 18 (2): 164-171.

7.     Greenberg E., Katz J.M., Janardhan V. et al. Treatment of a giant vertebrobasilar artery aneurysm using stent grafts. Case report. J. Neurosurg. 2007; 107 (1): 165-168.

8.     Li M.H., Li YD., Tan H.Q. et al. Treatment of distal internal carotid artery aneurysm with the willis covered stent: a prospective pilot study. Radiology. 2009; 253 (2): 470-477.

9.     Chalouhi N., Tjoumakaris S., Gonzalez L.F. et al. Coiling of large and giant aneurysms: complications and long-term results of 334 cases. AJNR Am. J. Neuroradiol. 2014; 35 (3): 546-452.

 

 

 

Abstract:

Endovascular correction of atrial septal defect (ASD) has become the «gold standard» of treatment, both in children and adults. In case of complicated anatomy of the defect (multiple defects, its large size, lack of edges, aneurysm of atrial septum), experts often chose surgical correction of such pathology Accumulated experience of interventional cardiology and appearance of specialized tools allow to perform a successful intervention in a non-standart situation.

Article describes cases of a successful endovascular correction of ASD in a two year child and adult patient with complicated anatomy factors. In both cases, during echocardiography, we diagnosed multiple ASD with aneurysm of atrial septum, accompanied by clinical symptoms. During multidisciplinary discussions, we identified indication for endovascular correction of the defect.

We performed successfull correction of ASD with occluder for closure of patent foramen ovale, and complete termination of left-to-right shunt on the operating table.

 

References

1.    Sharykin A.S. Vrozhdennye poroki serdca. [Congenital heart diseases] Moskva. Izdatel'stvo «Binom»,2009; S. 384 [In Russ].

2.     Medvedeva S.V. Metodicheskie rekomendacii. Dispansernoe nabljudenie detej s vrozhdennymi porokami serdca i sosudov [Guidelines. Clinical observation of children with congenital heart disease and blood vessels]. 2005; 5-20 [In Russ].

3.    Burakovskij V.I., Buharin V.A., Podzolkov V.I. i dr. Serdechno-sosudistaja hirurgija. Vrozhdennye poroki serdca [Cardiovascular surgery. Congenital heart diseases]. M. Medicina. 1989; 45-382 [In Russ].

4.    Dergachev A.V., Trojan V.V., Adzeriho I.Je., Kozlov O.A., Sprindzhuk M.V. Vrozhdennye poroki serdca s obednennym legochnym krovotokom. Uchebno-metodicheskoe posobie. Chast' 1 [Congenital heart diseases with depleted pulmonary circulation. Guidelines. Part 1.]. Mn.: BelMAPO. 2007; 29 il. 27 [In Russ].

5.    Amikulov B.D. Vrozhdennye poroki serdca blednogo tipa u vzroslyh [«Pale» congenital heart diseases in adults.]. Serdechno-sosudistaja hirurgija . 2004; 2: 3-9 [In Russ].

6.     Bokerija L.A., Gorbachevskij S.V. i dr. Nedostatochnost’ trikuspidal'nogo klapana i ee vlijanie na rezul'taty hirurgicheskogo lechenija defekta mezhpredserdnoj peregorodki u bol'nyh starshe 40 let. Serdechno-sosudistye zabolevanija [Tricuspid failure and its influence on results of surgical treatment of atrial septal defect in patients elder than 40]. 2009; 10 (2): 5-10 [In Russ].

7.     Nechkina I.V., Sokolov A.A. Kovalev I. A., Varvarenko V. I., Krivoshhekov E. V. Remodelirovanie serdca u detej posle jendovaskuljarnoj i hirurgicheskoj korrekcii defekta mezhpredserdnoj peregorodki [Cardiac remodeling in children after endovascular and surgical correction of atrial septal defect]. Sibirskij medicinskij zhurnal. 2012; 27(3): 77-81 [In Russ].

8.     Kurek V.V., Kulagin A.E. Anesteziologija i intensivnaja terapija detskogo vozrasta. Prakticheskoe rukovodstvo [Anesthesiology and intensive care of children]. M.: Medicinskoe informacionnoe agentstvo. 2011; S 992 [In Russ].

9.     Fredriksen P.M., Chen A., Veldtman G., Hechter S., Therrien J., Webb G. Exercise capacity in adult patients with congenitally corrected transposition of the great arteries. Heart. 85 (2). 191-195.

10.   Carole A., Warnes and ather. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). J Am CollCardiol. 2008; 52(23):1890-1947. doi:10.1016/j.jacc.2008.10.002

11.   ProkseljK., Kozelj M., ZadnikV., Podnar T. Echocardiographic characteristics of secundum-type atrial septal defects in adult patients: implications for percutaneous closure using Amplatzer septal occluders. J Am Soc Echocardiography. 2004.Nov. 17(11):1167-1172.

12.   Bokerija L.A., Kagramanov I.I., Alekjan B.G., i dr. Sravnitel'naja ocenka otdalennyh rezul'tatov korrekcii defekta mezhpredserdnoj peregorodki s pomoshhju otkrytogo i jendovaskuljarnogo metodov [Comparative estimation of long-term results of surgical and endovascular correction of atrial septal defect]. Bolezni serdca i sosudov. 2009; 3: 33-40 [In Russ].

13.   Baumgartner H., Bonhoeffer P, De Groot N.M. et al. ESC Guidelines for the management of grown-up congenital heart disease. (new version 2010).Eur Heart J. 2010; 31(23): 2915-57. doi:10.1093/eurheartj/ehq 249. Epub 2010 Aug 27.

14.   King T.D., Mills N.L. Nonoperative closure of atrial septal defects. Surgery. 1974; 75: 383-388.

15.   Kazmi T., Sadiq M., Asif-ur-Rehman, Hyder N., Latif F. Intermediate and long-term outcome of patients after device closure of ASD with special reference to complications. J Ayub Med CollAbbottabad. 2009; 21(3): 117-121.

16.   Rigatelli G., Dell'Avvocata F., Cardaioli P Five-year follow-up of transcatheterintracardiac echocardiography-assisted closure of interatrial shunts. Med. 2011; 12(6): 355-361. doi: 10.1016/j.carrev.2011.04.003. Epub2011 Jun 28.

17.   Jonas R.A. Comprehensive surgical management of congenital heart disease. London. 2004; р. 151-160.

18.   Tarasov R.S., Kartashjan Je.S., Ganjukov V.I.i dr. Transkateternaja korrekcija defekta mezhpredserdnoj peregorodki u detej razlichnyh vozrastnyh grupp[Transcatheter correction of atrial septal defect in different age children]. Rossijskij kardiologicheskij zhurnal. 2013; 3: 40-44 [In Russ].

 

 

 

Abstract:

Endovascular aortic repair (EVAR) proved to be safe and effective alternative to surgical treatment of abdominal aortic aneurism (AAA). Type II endoleaks development is the most frequent complication after EVAR that increases the rate of reinterventions and it is need to be treated in the case of aneurysm sac growth for rupture prevention. We present long-term results of the first case in our hospital of endovascular type II endoleak treatment. One month after EVAR of big AAA in high-risk patient type II endoleak on computer tomography (CT) was seen. 16 month after patient complained on lumbar and abdominal pain, expansion of endoleak size was seen on CT To prevent aneurysm sac rupture we performed endoleak' embolization with coil and micro-particles with good result during follow up period more than 3 years. Total follow-up period is more than 5 years, all elements of endograft are stable, aneurysm cavity decreased in diameter on 23 mm. Endovascular techniques for AAA treatment and for the treatment of it's possible life-threating complications are effective and safe during long-term follow-up period. 

 

References

1.     Chieba R., Melisano G., Setacci С. History of aortic surgery in the world. 2015; 2-10.

2.     Parodi J.C., Palmaz J.C., Barone H.D. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann Vasc Surg. 1991;5:491-499.

3.     Malas M., Arhuidese I., Qazi U., et al. Perioperative mortality following repair of abdominal aortic aneurysms: application of a randomized clinical trial to real-world practice using a validated nationwide data set. JAMA Surg. 2014;149:1260-1265.

5.     Speicher P., Barbas A., Mureebe L.. Open versus endovascular repair of ruptured abdominal aortic aneurysms. Ann Vasc Surg. 2014;28:1239.

6.     Stather P.W., Sidloff D., Dattani N., Choke E., Bown M.J., Sayers R.D. Systematic review and meta-analysis of the early and late outcomes of open and endovascular repair of abdominal aortic aneurysm. Br J Surg. 2013;100(7):863-872.

7.     Lee K., Forbes T. Current understanding of the significance and treatment of type II endoleaks. Ital J Vasc Endovasc Surg. 2012;19:191-197.

8.     Jones J.E., Atkins M.D., Brewster D.C., et al. Persistent type 2 endoleak after endovascular repair of abdominal aortic aneurysm is associated with adverse late outcomes. J Vasc Surg. 2007;46:1-8.

9.     Sidloff D.A., Stather P.W., Choke E., Bown M.J., Sayers R.D. Type II endoleak after endovascular aneurysm repair. Br J Surg. 2013;100:1262-1270.

10.   El Batti S., Cochennec F., Roudot-Thoraval F., Becquemin J.P. Type II endoleaks after endovascular repair of abdominal aortic aneurysm are not always a benign condition. J Vasc Surg. 2013;57:1291-1297.

11.   Tolia A., Landis R., Lamparello P., et al. Type II endoleaks after endovascular repair of abdominal aortic aneurysms: natural history. Radiology. 2005;235:683-686.

12.   Fabre D., Fadel E., Brenot P., Hamdi S., Caro A.G., et al. Type II endoleak prevention with coil embolization during endovascular aneurysm repair in high-risk patients. J Vasc Surg. 2015;62:1-7.

13.   Van Marrewijk C.J., Fransen G., Laheij R.J., Harris P.L., Buth J., et al. Is a type II endoleak after EVAR a harbinger of risk? Causes and outcome of open conversion and aneurysm rupture during follow-up. Eur J Vasc Endovasc Surg. 2004;27:128-137.

14.   Funaki B., Birouti N., Zangan S.M., Van Ha T.G., Lorenz J.M., Navuluri R et al. Evaluation and treatment of suspected type II endoleaks in patients with enlarging abdominal aortic aneurysms. J Vasc Interv Radiol 2012; 23: 866-872.

15.   Malgor R.D., Oderich G.S., Vrtiska T.J., Kalra M., Duncan A.A., et al. A case-control study of intentional occlusion of accessory renal arteries during endovascular aortic aneurysm repair. J Vasc Surg. 2013;58:1467-1475.

16.   Alerci M., Giamboni A., Wyttenbach R., Porretta A.P., Antonucci F., et al. Endovascular abdominal aneurysm repair and impact of systematic preoperative embolization of collateral arteries: endoleak analysis and long-term follow-up. J Endovasc Ther. 2013;20:663-671.

17.   Jamieson R.W., Bachoo P., Tambyraja A.L. Evidence for Ethylene-Vinyl-Alcohol-Copolymer Liquid Embolic Agent as a Monotherapy in Treatment of Endoleaks. Eur J Vasc Endovasc Surg. 2016;51:810-814.

18.   Youssef M., Nurzai Z., Zerwes S., Jakob R., Dьnschede F., et al. Initial Experience in the Treatment of Extensive Iliac Artery Aneurysms With the Nellix Aneurysm Sealing System. J Endovasc Ther. 2016;23:290-296

authors: 

 

Abstract:

Aim: was to assess dynamics of strain (S) and strain rate (SR) of longitudinal, circular and radial fibers in patients with left ventricular (LV) aneurysm (LVA) before and in early stages after coronary artery bypass graft (CABG) using Velocity Vector Imaging.

Material and methods: in 270 segments LV in patients with LVA, S and SR of LV fibers was analyzed before and after CAB. Also analysis of S and SR was performed in patients with CABG and plastic of the LV (group 1, 144 segments) and in the group with CABG without plastic of the LV (group 2, 126 segments).

Results: a function of longitudinal, circular and radial fibers after CABG has improved in all patients. Only SR of radial fibers reached normal. In group 1 was received the positive dynamics from the longitudinal S and SR, and SR circular and radial fibers. In group 2 indicators of function of longitudinal and circular fibers remained without negative dynamics, but positive dynamics is observed only from the SR of the radial fibers. The SR of radial fibers in both groups was normalized.

Conclusion: improvement of LV function in all patients is due to the group I. It is important to study the LV function in patients with LVA depending on the type of surgery.

 

References

1.     Paramonova T.I., Basylev V.V., Vdovkin A.V., Palkova V.A., Karpuchin V.G. Vliyanie operacij rekonstrukcii levogo zheludochka na funkcional'nye i ob"emnye pokazateli u bol'nyh s postinfarktnoj anevrizmoj. [The impact of operations on the reconstruction of the left ventricle function and volume indices in patients with postinfarction aneurism.] Diagnostic radiology and radiotherapy. 2015; 1(6): 74-81 [In Russ].

2.     Dor V., Di Donato M., Civaya F. Postinfarktnoe remodelirovanie levogo zheludochka: magnitno-rezonansnaya tomografiya dlya ocenki patofiziologii posle rekonstrukcii levogo zheludochka. [Post myocardial infarct remodeling: role of magnetic resonance imaging for the assessment of its pathophysiology after left ventricular reconstruction.] Thoracic and Cardiovascular Surgery. 2014; 3: 14-27 [In Russ].

3.     Chernyavskii A.M., Kareva Yu. E., Denisova M.A.,Efendiev V.U. Problema predoperacionnogo modelirovaniya levogo zheludochka. [The problem of preoperative left ventricular modeling.] Cardiology and Cardiovascular Surgery. 2015; 2: 4-7 [In Russ].

4.     Carasso Sh., Biaggi P., Rakowski H. et al. Velocity Vector Imaging: Standart Tissue - Tracking Results Acquired in Normals - The VVI - Strain Study. Journal of the American Society of Echocardiography. 2012; 25(5): 543-552.

5.    Alekhin M.N. Ul'trazvukovye metody ocenki deformacii miokarda i ih klinicheskoe znachenie. [Ultrasound estimation techniques and their clinical significance.] M.: Vidar-M, 2012; 88 p [In Russ].

6.     Rostamzadeh A., Shojaeifard M., Rezaei Y, et al. Diagnostic accuracy of myocardial deformation indices for detecting high risk coronary artery disease in patient without regional wall motion abnormality. Int J Clin Exp Med. 2015; 8(6): 9412-9420.

7.    Pavlyukova E.N., Karpov R.S Deformaciya, rotaciya i povorot po osi levogo zheludochka u bol'nyh ishemicheskoj bolezn'yu serdca s tyazheloj levozheludochkovoj disfunkciej. [Deformation, rotation, and axial torsion of the left ventricle in coronary heart disease patients with its severe dysfunction. ] Terapevticeskij arhiv. 2012;9: 11-16 [In Russ].

8.     Lang R.M., Badano L.P, Mor-Avi V., et al. Recommendation for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. 2015; 16: 233-271.

9.     Helsinki declaration of VMA: Eticheskie principy medicinskih issledovanij s privlecheniem cheloveka, prinyataya 18-j General'noj Assambleej VMA (Hel'sinki, Finlyandiya, iyun’ 1964 п.) [Ethical principles of medical researches with involvement of the person, Accepted by the 18th General Assembly of VMA (Helsinki, Finland, June, 1964). ]http://www. psychiatr.ru/lib/helsinki_declaration.php. (date of the address: 25.05.2015 г.) [In Russ]

 

 

 

Abstract:

Aim: was to determine what dimensions of an end-diastolic volume (EDV) in patients with reducec left ventricular function (LV) higher chances to measure its value up to 50 ml with Echocardiography compared to MRI.

Materials and methods: the sample consisted of 134 patients with ischemic cardiomyopathy and ejection fraction (EF) less than 35%. A mathematical model that calculates what dimensions of the MLC are more likely to determine its size with an accuracy of up to 50 ml with Echocardiography compared to MRI. Produced logistic regression analysis and calculated odds ratios.

Results: аccording to Echocardiography the EDV was 250.5 ± 67.6 ml, EF was 29.4 ± 5.0 percent. According to MRI, the EDV was 249.3 ± 77.2 ml, EF was 29.9 ± 6.4 percent. Results of the logistic regression analysis showed that EDV to 150 ml have high chances of a consistent measure of EDV with Echocardiography and MRI (OR a 2,5). In groups with EDV more than 150 ml but less than 300 ml had low chances of an accurate measurement of the EDV at the Echocardiography (OR from 0,62 to 0,95). Since EDV is greater than 300 ml, a marked increase chances Echocardiography, to determine EDV up to 50 ml compared to MRI (OR from 2,3 to 4,2).

Conclusions: when EDV to 150 ml, and in dilatation of the left ventricle more than 300 ml MRI has no advantages compared to Echocardiography In these figures there is no need to duplicate echocardiographic study When the EDV of 150 to 300 ml, for determination of volumetric indices it is better to use MRI, because the computations do not depend on the geometric shape of the left ventricle.

 

References

1.     Brown M., Schaff N., Suri R. et al. Indexed Left Ventricular Dimensions Best Predict Survival After Aortic Valve Replacement in Patients With Aortic Valve Regurgitation. Ann Thorac Surg. 2009; 87: 1170-1176.

2.     Grayburn P, AppletonC., DeMaria A. et al. Echocardiographic Predictors of Morbidity and Mortality in Patients With Advanced Heart Failure. The Beta-blocker Evaluation of Survival Trial. J Am Coll Cardiol. 2005; 45: 1064-1071.

3.     Kleml., Shah D., White R. et al. Prognostic Value of Routine Cardiac Magnetic Resonance Assessment of Left Ventricular Ejection Fraction and Myocardial Damage. Circ Cardiovasc Imaging. 2011; 4: 610-619.

4.     Malm S., Frigstad S., Sagberg E.; et al. Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography a comparison with magnetic resonance imaging. J Am Coll Cardiol. 2004; 44 (5): 1030-1035.

5.     Bogaert J., Dymarkowski S., Taylor A. M. et al. Clinical Cardiac MRI. Springer. 2012; 721.

6.     Kreitner, K-F, Sandstede J. Leitlinien for den Einsatz der MR-Tomographi in der Herzdiagnostik. Fortschr Roentgenstr. 2004; 176: 1185-1193.

7.     Bellenger N.G., Burgess M.I., Ray S.G. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionucleide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J. 2000; 21: 1387-1396.

8.     Bernard Y, Meneveau N., Boucher S. et al. Lack of agreement between left ventricular volumes and ejection fraction determined by two-dimensional echocardiography and contrast cineangiography in postinfarction patients. Echocardiography. 2001; 18: 113-122.

9.     De Haan S., de Boer K., Commandeur J. et al. Assessment of left ventricular ejection fraction in patients eligible for ICD therapy: Discrepancy between cardiac magnetic resonance imaging and 2D echocardiography. Neth Heart J. 2014; 22 (10): 449-455.

10.   Gardner B., Bingham S., Allen M. et al. Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. The J of Cardiovasc ultrasound. 2009; 7: 38.

11.   Bellenger N.G., Francis J.M., Davies L.C. et al. Establishment and performance of a magnetic resonance cardiac function clinic. J Cardiovasc Magn Reson. 1999; 1 (4): 323-330.

12.   Darasz K.H., Underwood S.R., Bayliss J. et al. Measurement of left ventricular volume after anterior myocardial infarction: comparison of magnetic resonance imaging, echocardiography, and radionuclide ventriculography. The Int J of Cardiovasc Imaging. 2002; 18(2): 135-142.

13.   Li C., Lossnitzer D., Katus H.A. et al. Comparison of left ventricular volumes and ejection fraction by monoplane cineventriculography, unenhanced echocardiography and cardiac magnetic resonance imaging. Int J Cardiovasc Imaging. 2012; 28 (5): 1003-1010.

14.   Duncan A.I., Lowe B.S., Garcia M.J. et al. Influence of concentric left ventricular remodeling on early mortality after aortic valve replacement. Ann Thorac Surg. 2008; 85 (6): 2030-2039.

15.   Lang R., Bierig M., Devereux R. et al. Recommendations for Chamber Quantification: A Report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group. J Am Soc Echocardiogr. 2005; 18: 14401463.

16.   Belenkov Ju.N., Ternovoj S.K., Sinicyn V.E. Magnitno-rezonansnaja tomografija serdca i sosudov [Cardiac and vesssels MRI]. M.: Vidar. 1997; 144 [In Russ].

17.   Di Donato M., Sabatier M., Dor V. Akinetic versus dyskinetic postinfarction scar: relation to surgical outcome in patients undergoing endoventricular circular patch plasty repair. JACC. 1997; 29: 1569-1575.

18.   Hoffmann R., von Bardeleben S., ten Cate F., et al. Assessment of systolic left ventricular function: a multicentre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography. Eur Heart J. 2005; 26: 607-16.

19.   Jenkins C., Moir S., Chan J. et al. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J. 2009; 30: 98-106.

20.   Lim T.K., Burden L., Janardhanan R., et al. Improved accuracy of low-power contrast echocardiography for the assessment of left ventricular remodeling compared with unenhanced harmonic echocardiography after acute myocardial infarction: comparison with cardiovascular magnetic resonance imaging. J Am Soc Echocardiogr. 2005; 18: 1203-1207.

21.   Thomson H.L., Basmadjian A., Rainbird A. et al. Contrast echocardiography improves the accuracy and reproducibility of left ventricular remodeling measurements: A prospective, randomly assigned, blinded study. J Am Coll Cardiol. 2001; 38: 867-875.

22.   Buziashvili Ju.I., Kljuchnikov I.V., Melkonjan A.M. i soavt. Ishemicheskoe remodelirovanie levogo zheludochka (opredelenie, patogenez, diagnostika, medikamentoznaja i hirurgicheskaja korrekcija) [Ischemic remodeling of left ventricle (determination, pathogenesis, diagnostics, drug and surgical correction]. Kardiologija. 2002; 42 (10): 88-94 [In Russ].

23.   Chernjavskij A.M., Kareva Ju.E., Denisova M.A. i soavt. Problema predoperacionnogo modelirovanija levogo zheludochka [Problem of post-operative remodeling of left ventricle]. Kardiologija i serdechno-sosudistaja hirurgija. 2015; 2: 4-7 [In Russ].

24.   Di Donato M., Castelvecchio S., Kukulski T. et al. Surgical Ventricular Restoration: Left Ventricular Shape Influence on Cardiac Function, Clinical Status, and Survival. Ann Thorac Surg. 2009; 87 (2): 455-461.

25.   Ahn H.S., Kim H.K., Park E.A. et al. Isolated, broad-based apical diverticulum: cardiac magnetic resonance is a «terminator» of cardiac imaging modality for the evaluation of cardiac apex. Korean Circ J. 2013; 43 (10): 702-704.

26.   Lloyd S.G., Buckberg G.D. Use of cardiac magnetic resonance imaging in surgical ventricular restoration. Eur J of Cardiothoracic Surg. 2006; 216-222.

 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы