Website is intended for physicians
Search:
Всего найдено: 3
authors: 

 

Abstract:

Aim: was to develop a pharmacokinetic model and simulate the kinetics of radiopharmaceuticals in the human body for the functional study of the hepatobiliary system using the dynamic scintigraphy method.

Materials and methods: the paper uses the method of compartmental modeling of drug pharmacokinetics (pharmacokinetic modeling) and results of dynamic scintigraphy of the hepatobiliary system of a patient with choledocholithiasis before and after endoscopic papillosphincterotomy to identify model parameters.

Results: various methods of model parameters identification based on quantitative data of hepatobiliscintigraphy are proposed. Results of pharmacokinetic modeling for dynamic scintigraphy of the hepatobiliary system in cases of non-visualizing gallbladder (four-compartment model) and visualizing gallbladder with stimulation of its emptying (five-compartment model) are presented and analyzed.

Conclusion: results of pharmacokinetic modeling presented in the article (calculated quantitative parameters and time activity curves) are in good agreement with the clinical data of dynamic scintigraphy of the hepatobiliary system in normal and pathological conditions. From the comparative analysis of model time activity curves for different zones of interest, the time of stimulation of gallbladder emptying is justified, which normally should be 35-40 min from the beginning of the study.

 

References

1.     National guide on radionuclide diagnostics. In 2 volumes. Vol. 2. (Ed. by Yu.B. Lishmanov, V.I. Chernov). Tomsk: STT, 2010; 418 [In Russ].

2.     Rassam F, Zhang T, Cieslak KP et al. Comparison between dynamic gadoxetate-enhanced MRI and 99mTc-mebrofenin hepatobiliary scintigraphy with SPECT for quantitative assessment of liver function. European Radiology. 2019; 29: 5063-5072.

3.     Lambie H, Cook AM, Scarsbrook AF et al. Tc99m-hepatobiliary iminodiacetic acid (HIDA) scintigraphy in clinical practice. Clinical Radiology. 2011; 66: 1094-1105.

4.     Gupta M, Choudhury PS, Singh S, Hazarika D. Liver functional volumetry by Tc99m mebrofenin hepatobiliary scintigraphy before major liver resection: A game changer. Indian Journal of Nuclear Medicine. 2018; 33: 277-283.

5.     Sergienko VI, Dzhelliff R, Bondareva IB. Applied pharmacokinetics: main provisions and clinical application. М.: Izd-vo RAMN, 2003; 208 [In Russ].

6.     Bellman R. Mathematical methods in medicine. (Ed. by L.N. Belykh). M.: Mir, 1987; 200 [In Russ].

7.     Kotina ED. Program complex «Diagnostics» for processing radionuclide research. Vestnik of Saint Petersburg University. 2010; 2: 100-113 [In Russ].

8.     Matveev AV, Korneeva MYu. Features of modeling of kinetics of radiopharmaceuticals in functional research of the gepatobiliarny system. Herald of Omsk University. 2015; 3: 42-51 [In Russ].

9.     Yusupova AF, Valiullina NM, Odincova AH. Dynamic scintigraphy of the hepatobiliary system in the diagnosis of postcholecystectomy syndrome. Kazan Medical Journal. 2007; 88 (1): 44-46 [In Russ].

10.   Hazanov AI. Functional diagnostics of liver diseases, 2nd ed. М.: Medicina, 1988; 304 [In Russ].

11.   Matveev AV, Noskovec DYu. Pharmacokinetic modeling and dosimetric planning of radioiodine therapy of thyrotoxicosis. Herald of Omsk University. 2014; 4: 57-64 [In Russ].

12.   Huk R, Dzhivs TA. Direct search for solutions to numerical and statistical problems. М.: Mir, 1961; 219 [In Russ].

13.   Kudryashova NE. Radionuclide diagnostics in emergency conditions. Dr. med. sci. diss.. Moscow. 2009; 325 [In Russ].

14.   Kudryashova NE, Ermolov AS, Ivanov PA et al. Hepatobiliscintigraphy in the diagnosis of mechanical jaundice. Vestnik rentgenologii i radiologii. 2007; 3: 39-45 [In Russ].

15.   Rogal' ML, Novikov SV, Magomedbekov MM et al. Choice of surgical treatment tactics for patients with acute cholecystitis complicated by choledocholithiasis. Khirurgiya. Zhurnal imeni N.I. Pirogova. 2018; 4: 41-45 [In Russ].

16.   Hubutiya MSh, Kudryashova NE, Sinyakova OG et al. Use of radionuclide studies in the preparation of patients for liver transplantation and in the postoperative period. Transplantologiya. 2010; 1: 5-10 [In Russ].

 

Abstract:

In the article considers modern commercial method of production is demanded used in oncology medical product radiopharmaceutical 18F-fluorodeoxyglucose (2-fluoro,18F-2-deoxy-D-glucose, 18F-FDG), are presented the process steps and operation of synthesis, quality control procedures, briefly described the requirements for packaging and labeling of radiopharmaceutical.

 

 

References

1.     Kam Leung. [18F]Fluoro-2-deoxy-2-D-glucose in Molecular Imaging and Contrast Agent Database (MICAD). National Center for Biotechnology Information, NLM, NIH, Bethesda, MD. 2005.

2.     Min-Fu Yang, Diwakar Jain, Zuo-Xiang He. 18F-FDG Cardiac Studies for Identifying Ischemic Memory. Curr Cardiovasc Imaging Rep. 2012; Dec, 5:383-389.

3.     Ghesani M., Depuey E. G., Rozanski A. Role of F-18 FDG positron emission tomography (PET) in the assessment of myocardial viability. Echocardiography. 2005 Feb; 22(2): 165-77.

4.     Nose H., Otsuka H., Otomi Y et al. Evaluation of normal physiologic left ventricular myocardial 18F-FDG uptake at fasting state. European Congress of Radiology. 2012. Vienna, Austria. URL: http://posterng.netkey.at/esr/ viewing/index.php?module=viewing_poster&doi=10.1594 /ecr2012/C-1192 2012.

5.     Dong Soo Lee, Sang Kun Lee, Myung Chul Lee. Functional Neuroimaging in Epilepsy: FDG PET and Ictal SPECT. Korean Med Sci. 2001;16: 689-96.

6.     Teune L. K., Bartels A. L., Leenders K. L. FDG-PET Imaging in Neurodegenerative Brain Diseases // Functional Brain Mapping and the Endeavor to Understand the Working Brain edited by Francesco Signorelli and Domenico Chirchiglia, 2013.

7.     Sanchez-Catasis C. A., Vallez, Garcha D., Le Riverend Morales E., Galvizu Sбnchez R. Traumatic Brain Injury: Nuclear Medicine Neuroimaging .PET and SPECT in Neurology. 2014; 923-946.

8.     Masangkay N., Basu S., Moghbel M. et al. Brain 18F-FDG-PET characteristics in patients with paraneoplastic neurological syndrome and its correlation with clinical and MRI findings. Nucl Med Commun. 2014 Oct; 35 (10): 1038-46.

9.       Statistika zlokachestvennyh novoobrazovanij v Rossii i stranah SNG v 2012 g. Pod redakciej M.I. Davydova, E.M. Aksel'. [Statistics of malignant neoplasms in Russia and CIS countries in 2012. Edited by M.I. Davydova, E.M. Axel.] Moskva, 2014. - 226 s [In Russ].

10.   Jones S. C., Alavi A., Christman D. et al. The radiation dosimetry of 2 [F-18]fluoro-2-deoxy-D-glucose in man. J Nucl Med. 1982; 23, 613-617.

11.   Kuwabara H., Gjedde A. Measurements of glucose phosphorylation with FDG and PET are not reduced by dephosphorylation of FDG-6-phosphate. J Nucl Med. 1991 Apr; 32(4): 692-8.

12.   Data are from International Commission on Radiological Protection. Radiation Dose to Patients from Radiopharmaceuticals. St. Louis, MO. Elsevier; 2000:49. ICRP publication 80.

13.   Ido T., Wan C. N., Fowler J. S. Fluorination with F2: convenient synthesis of 2-deoxy-2-fluoro-d-glucose. J Org Chem. 1977; 42: 2341-2.

14.   Hamacher K., Coenen H. H., Stacklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]- fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986; 27: 235-8.

15.   Toorongian S. A., Mulholland G. K., Jewett D. M. et al. Routine production of 2-deoxy-2-[18F]fluoro-D- glucose by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin. Int J Rad Appl Instrum B. 1990; 17 (3): 273-9.

16     Normy radiacionnoj bezopasnosti (NRB-99/2009). [Norms of radiation safety (NRB-99/2009).] SP 2.6.1.2523-09.[In Russ].

17.   Osnovnye sanitarnye pravila obespecheniya radiacionnoj bezopasnosti (OSPORB-99/2010). [Basic sanitary rules for ensuring radiation safety (0SP0RB-99/2010)]. SP 2.6.12612-10 [In Russ].

18.   SanPiN 2.6.1.3288-15 «Gigienicheskie trebovaniya po obespecheniyu radiacionnoj bezopasnosti pri podgotovke i provedenii pozitronnoj ehmissionnoj tomografii». [Hygienic requirements for ensuring radiation safety in the preparation and conduct of positron emission tomography.] [ In Russ].

19.   N.A. Gomzina, D.A. Vasil’ev, R.N. Krasikova. Optimization of Automated Synthesis of 2-[18F]Fluoro- 2-deoxy-D-glucose Involving Base Hydrolysis. Radiochemistry. 2002; 44 (4): 403-409.

20.   Gopal B. Saha. Basics of PET Imaging: Physics, Chemistry and Regulations. - 3th ed. - New York: Springer International Publishing, 2016; 165.

Abstract:

Aim: was to estimate the functionality of the nanokoloid drug labeled with technetium-99m for scintigraphy and intraoperative detection of «sentinel» lymph nodes (SLN) in experimental animals.

Materials and methods: the study was performed in 6 series of experiments, including 5 white male rats line «Wistar» weighing 300-350 g. Injection of radiopharmaceuticals (RPh) at a dose of 18-20 MBq were performed between the first and second fingers of the front paws of rats.

Results: in scintigraphic studies STL noted that RPh «Nanocolloid, 99mTc-Al2O3» accumulation reaches a plateau at the node (10.2%) for 2 hour study and its percentage content is stored at this level until 24 h. Intraoperative study, in all cases it was possible to visualize the STL.

Conclusions: results shows functional fitness RPh «Nanocolloids,99mTc-Al2O3» for scintigraphy and intraoperative detection of «sentinel» lymph nodes. 

 

References

1.     Semiglazov V.F. Novoe napravlenie v sberegatel'nom i organosohranjajushhem hirurgicheskom lechenii zlokachestvennyh opuholej. [A new trend in savings and organ-surgical treatment of malignant tumors]. Medicinskij vestnik 2009; 35 (504): 12-24 [In Russ].

2.     Abu-Rustum N.R., Knoury-Collado F., Gemignani M.L. Tehniques of sentinel lymph node identification for early-stage cervical and uterine cancer. Gynecol. Oncol. 2008; 111(2): 44-50.

3.     Altgassen C., Hertel H. et al. Multicenter valida- cion study of the sentinentel lymph node concept in cervical cancer: AGO Study Group. J. Clin. Oncol. 2008; 26: 2943-2951.

4.     Kuznecov V.V., Lebedev A.I., Morhov K.Ju., Gricaj A.N. Hirurgija invazivnogo raka shejki matki [Surgery is invasive cervical cancer]. Prakticheskaja onkologija. 2002; 3(3): 178-182 [In Russ].

5.     Hauspy J., Beiner M., Harley А. Sentinel Lymph Node in early stage cervical cancer. Gynecol. Oncol. 2008; l08 (1): 256-257.

6.     Takeda N., Sakuragi N., Takeda M. et al. Multivariate analysis of histopathologic prognostic factors for invasive cervical cancer treated with radical hysterectomy and systematic retroperitoneal lymphadenectomy. Acta Obstet. Gynecol. Scand. 2002; 81: 1144-1151.

7.     Seong S.J., Park H., Yang K.M. et al. Detection of sentinel lymph nodes in patients with early stage cervical cancer. J. Korean Med. Sci. 2007; 22 (1): 105-109.

8.     Baggish M.S., Karram M.K. Atlas anatomii taza i ginekologicheskoj hirurgii [Atlas of pelvic anatomy and gynecologic surgery]. London: Izd-vo Elsevier Ltd. 2009; 1172 [In Russ].

9.     Lawrenz B., Jauckus J., Kupka M.S. et al. Fertility preservation in >1,000 patients: patient’s characteristics, spectrum, efficacy and risks of applied preservation techniques. Arch. Gynecol. Obstet. 2010; 283(3): 651-656.

10.   Klinicheskaja onkoginekologija: Rukovodstvo dlja vrachej. (Pod red. V.P Kozachenko) [Clinical cancers: A Guide for Physicians. (Ed. V. Kozachenko)]. M.: Medicina, 2005; 431[In Russ].

11.   Abu-Rustum N.R., Neubauer N., Sonoda Y et al. Surgical and pathologic outcomes of fertility-sparing radical abdominal trachelectomy for FIGO stage IB1 cervical cancer. Gynecol. Oncol. 2008; 111(2): 261-264.

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы