Website is intended for physicians
Search:
Всего найдено: 13

 

Abstract:

Aim: was to study immediate and medium-term results of using of stent Calypso in patients with acute coronary syndrome (ACS).

Materials and methods: 274 patients with ACS were included in study and were divided into 2 groups. The first group consisted of 140 patients, who underwent implantation of Calypso (Angioline, Russia). The other group consisted of 134 patients who underwent revascularization with further implantation of Xience (Abbot Vascular, USA). During first 24 hours after admission to the hospital all patients underwent percutaneous coronarography intervention (PCI). Their health state was monitored by phone during the 6, 9-12 months period. The majority of patients underwent coronary angiography during 9-12 months period.

Results: immediate results of the first group: incomplete stent apposition - in 0,6% cases, difficulties of delivery - in 3 cases, artery dissection - 2, occlusion of the side branch - 2 cases, acute thrombosis - 0,6% cases. Immediate results of the second group: incomplete stent apposition - in 0,5% cases, difficulties of delivery - in 2 cases, artery dissection - 2, occlusion of the side branch - 1 case, acute thrombosis - none. Confirmatory angiography in 9-12 months was done in 89 patients from the first group and 94 patients from the second group. The frequency of MACE in first group was 4,3%, in second group was 3,7%.

Conclusions: taking into consideration immediate and medium-term results it can be concludec that domestic stents can be successfully used in different clinical situations in different severity of lesions of coronary arteries. Calypso could be used in urgent PCI and they have minor percentage of complications in medium-term results.

  

 Reference 

1.     Chernjaev M.V., Koledinskij A.G. i dr. Koronarnye stenty: proshloe, nastojashhee, budushhee. Otechestvennye razrabotki v jendovaskuljarnoj hirurgii (obzor literatury). [Coronary stents: past, present, future. Domestic elaborations in endovascular surgery (literature review)]. Diagnosticheskaja i intervencionnaja radiologija. 2016; 10(4):51-56 [In Russ].

2.     Kudrjashov A.N., Lopotovskij P.Ju. Sravnitel'naja ocenka mehanicheskih svojstv koronarnogo stenta «Sinus». [Comparative estimation of mechanical properties of coronary stent «Sinus»]. Diagnosticheskaja i intervencionnaja radiologija.. 2014; 8(1)1:70-77 [In Russ].

3.     Lopotovskij P.Ju., Parhomenko M.V., Kokov L.S. Predvaritel'nye rezul'taty Registra retrospektivnogo issledovanija praktiki primenenija rossijskih stentov «Sinus» i «Kalipso». [Preliminary results of a retrospective study register for the use of Russian stents «Sinus» and «Calypso»]. Vestnik Roszdravnadzora. 2015; 5:44-49 [In Russ].

 

 Abstract:

Aim: was to compare endothelialization of stents with permanent and biodegradable coatings at an early stage with help of optical coherence tomography (OCT).

Materials and methods: this study is a prospective, randomized trial that includes a comparative analysis of OCT data in patients after implantation of coronary stents with biodegradable (study group) and permanent coatings (control group). 98 patients were randomized 1:1 into 2 groups. After 3 months, 10 patients from each group - were randomized to conduct OCT.

Results: we analyzed OCT data of 10 studies in the biodegradable group (1,776 struts and 247 sections) and 10 studies in the permanent coating group (1562 struts and 226 sections). There were no differences in proportion of uncovered (8,9% vs. 8,5%, p=0,49) and non-exposed struts (1,6% vs. 1,3%, p=0,2). Thus, 98,4% of struts in study group and 98.7% in control group were endothelialized.

Conclusions: according to OCT data, similar results were obtained in both groups. After 3 months of observation in two groups, the overwhelming number of struts were endothelialized. At the early stage of observation, none of groups, achievement of endpoints was detected. 

 

References

1.     Mauri L., Kereiakes D., Yeh R. et al. Twelve or 30 Months of Dual Antiplatelet Therapy after Drug-Eluting Stents. N Engl J Med. 2014; 371:2155-2166.

2.     Authors/Task Force members , Windecker S., Kolh P., et al. ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541-619.

3.     Kim S., Kim J.S., Shin D.H., et al. Comparison of early strut coverage between zotarolimus- and everolimus-eluting stents using optical coherence tomography. Am J Cardiol. 2013;111:1-5.

4.     Izumi D., Miyahara M., Sakai M., Fukuoka S. OCT- based comparison of early strut coverage between zotarolimus- and everolimus-eluting stents with second stent designs. Eurointervention. 2014;5;20.

5.     Ormiston J., Webster M., Stewart J. et al. First-inHuman Evaluation of a Bioabsorbable Polymer-Coated Sirolimus-Eluting Stent. JACC: Cardiovasc int 2013; 6(10): 1026-1034.

6.     Karjalainen P, Varho V., Nammas W. et al. Early Neointimal Coverage and Vasodilator Response Following Biodegradable Polymer Sirolimus-Eluting vs. Durable Polymer Zotarolimus-Eluting Stents in Patients With Acute Coronary Syndrome. Circulation Journal .2015;79(2): 360-367. 

 

Abstract:

Stenting of the patent ductus arteriosus (PDA) is a relatively new method of palliative treatment ir children with congenital heart disease (CHD) and is an alternative to systemic-pulmonary shunt.

Aim: was to evaluate the efficacy of stenting in the PDA as a palliative care in children with pulmonary ductus-dependent hemodynamic in «Children Repubfcan Clinical Hospital» (CRCH).

Materials and methods: we analyzed data of 11 patients, with CHD and pulmonary ductus-dependent hemodynamics, who underwent stenting of PDA in CRCH for the period of 2007-2015. To assess the effectiveness of the procedure we took into consideration following data: clinical diagnosis; patient's condition before and after stenting of PDA.

Results: primary stenting of PDA was success in 10 patients, there was no severe complication and death. In 1 patient, there was a stent migration to the pulmonary artery, and due to the closure of the PDA and thus increasing cardiovascular insufficiency, child was taken to the corrective surgery, during which the stent was removed. As a result, in 10 successfully stented patients, in nearest follow-up observation period (15 to 28 days, mean 22 days), 7(70%) patients had a positive effect; in 3 patients progressing hypotension appeared on the 2nd day after the treatment, that leaded to pefrorming of endovascular procedures with Rashkind's method. In the later follow-up observation period, 6 of 7 patients had remaining satisfactory parameters of pulmonary hemodynamics (saturation ranged from 78% to 92%), before using of radical correction of pathology (in terms of 3 to 6 months.).

Conclusion: the stenting procedure for closing of PDA as a palliative treatment for infants with CHD and pulmonary ductus-dependent hemodynamics is effective to stabilize the severe clinical condition of patients prior to radical correction of defects in 60% of cases.  

 

References 

1.    Denise van der Linde, Elisabeth E.M. Konings, Maarten A. Slager, at al. Prevalence of Congenital Heart Disease Worldwide : A Systematic Review and Meta-Analysis. Journal of the American College of Cardiology. 2011; 58(21): 2241-2247.

2.    Emelyanchik E.Y., Kirilova Y.P., Yakshanova S.V., et al. Rezultaty primeneniya preparata prostoglandina E1 Vazaprostana v lechenii detey s duktus-zavisimym krovoobrascheniem. [Results of drug prostaglandin E1 Vazaprostan in treatment of children with ductus-dependent hemodynamics]. Sibirskoe meditsinskoe obozrenie. 2013; 6: 68-72. [In Russ].

3.    Mirolubov L.M. Vrozhdyennye poroki serdtsa u novorojdennykh I detey pervogo goda zhizni. [Congenital heart defects in newborns and infants]. Kazan. 2008: 33-51. [In Russ]

4.    Vakhvalova I.V., Idov Е.М., Shirogorova A.V.,et al. Duktus- zavisimye vrozhdennye poroki razvitiya serdtsa u detey: osobennosti klinicheskogo techeniya na etapakh do- i posleoperatsionnogo vykhazhivaniya. [Ductus-dependent congenital heart disease in children: clinical features at stages of pre- and postoperative nursing.] Vestnik uralskoy meditsynskoy akademicheskoy nauki. 2008; 2: 47-52. [In Russ]

5.    Bokeriya L.A., Alekyan B.G. Rukovodstvo po rentgenendovaskulyarnoy hirurgii serdtsa I sosudov. [Guidelines for endovascular surgery of the heart and blood vessels. The 3 volumes.] Т 2. Moskow. 2013; 289-303. [In Russ].

6.    Berishvili I.I., Garibyan V.A., Aleksii-Meskhishvili V.V., et al. Priobretyennaya deformastiya legochnoy arterii posle nalozheniya mezharterialnogo anastomoza u detey rannego vozrasta. [Acquired deformity of the pulmonary artery anastomosis after the imposition between arterial in infants]. Grudnaya khirurgiya. 1978; 5: 51-56. [In Russ]

Comparison between implantation of drug-eluting stents under control of intravascular ultrasound and angiography: the randomized trial «orenburg». Part 1: study design, direct clinical results



DOI: https://doi.org/10.25512/DIR.2015.09.3.05

For quoting:
Demin V.V., Ilnickaya E.A., Galin P.Yu., Lomakina E.V., Demin D.V., Minakaeva N.Z., Dolgov S.A., Baryshnikov A.G., Murzajkina M.M., Lymareva M.L., Demin A.V., Kulinich T.N., Zherdev A.A. "Comparison between implantation of drug-eluting stents under control of intravascular ultrasound and angiography: the randomized trial «orenburg». Part 1: study design, direct clinical results". Journal Diagnostic & interventional radiology. 2015; 9(3); 31-43.

Abstract:

Aim: was to provide design and direct clinical outcomes of ORENBURG (Optimal dRug Eluting steNts implantation guided By combination of intravascular Ultrasound and optical coheRence tomoGraphy) - single-center randomized clinical trial.

Materials and methods: 1032 patients were included in this study These patients were treatec with 6 types of drug eluting stents. Patients were randomized not only to the type of implanted stent, but also to the type of guidance of the procedure: intravascular ultrasound (IVUS) - 676 patients, quantitative coronary arteriography (QCA) - 356 patients. Before the procedure was finished, all patients underwent optical coherence tomography (OCT) analysis. Regardless of its results no more adjacent procedures were performed.

Results: we provide characteristics of patients included in this study These characteristics showed an absence of significant differences between two groups of patients (IVUS and QCA groups) and between subgroups of patients, received different types of DES. While analyzing parameters of index procedure, it was emphasized that IVUS group involved a bigger number of patients with left main disease and bifurcation disease, and also a bigger number of stents per lesion, diameter of first stent, total length of used stents, maximal diameter of the postdilatation balloon. Characteristics of Nobori stent (range of sizes) can explain that significantly smaller diameter and length of the first and the second stent implanted, total length of stents per lesion, and maximal diameter of postdilatation balloon were recorded in the Nobori stent subgroup of patients. Besides that, in that subgroup were no patients with left main disease, smaller number of patients with angiographically evident calcifications, but was a bigger number of patients with circumflex artery disease. Immediate effect of the implantation was obtained in 100% of patients. According to the short-term follow-up, 1 patient died due to the myocardial infarction in the region of the untreated artery

Conclusion: angiographic data, and IVUS and OCT results of analyzed patients are going to be published in the next article.  

 

References 

1.    Mintz G.S. Intracoronary Ultrasound. London and New York: Taylor & Francis. 2005, 408.

2.    Colombo A., Tobis J. Techniques in Coronary Artery Stenting. London: Martin Dunitz. 2000, 422.

3.    Demin V.V. Klinicheskoe rukovodstvo po vnutrisosudistomu ultrazvukovomu skanirovaniyu [Clinical guide to intravascular ultrasound]. Orenburg: Yuzhnyj Ural [South Ural]. 2005; 400.[In Russ].

4.    Demin V.V., Zelenin V.V., Zheludkov A.N. et al. Vnutrisosudistoe ultrazvukovoe skanirovanie pri intervencionnyh vmeshatelstvah na koronarnyh arteriyah: optimalnoe primenenie i kriterii ocenki [Intravascular ultrasound scanning during coronary interventions: optimum application and assessment criteria]. International Journal of Interventional Cardioangiology.2003; 1: 66-72 [In Russ].

5.    Demin V.V., Demin D.V., Dolgov S.A. et al. Sravnenie informativnosti vnutrisosudistogo ultrazvukovogo issledovania I opticheskoj kogerentnoj tomografii vo vremj operacii stentirovanij koronarnyh arterij. [Comparison of intravascular ultrasound and optical coherence tomography informativeness in coronary stenting]. Ultrazvukovye i luchevye diagnostiki v klinicheskoj praktike [Ultrasound and radiology technic in clinical practice]. Ad by Sandrilov V.A., Fisenko E.P., Kulagina T.Yu. Moscow: «Firma STROM». 2012; 12-18 [In Russ].

6.    Demin V.V., Demin D.V., Dolgov S.A. et al. Primemenie vnutrisosudistogo ultrazvukovogo issledovania i opticheskoj kogerentnoj tomografii pri implantacii koronarnyh stentov s lekarstvennym pokrytiem. [Using of intravascular ultrasound and optical coherence tomography in coronary drug-eluting stents implantation]. Oblastnaj bolnitza v sisteme regionalnogo zdravoohranenij. [Regional clinic in regional health care system]. Orenburg: Gazprompechat. 2012; 73-77 [In Russ].

7.    Oemrawsingh P.V., Mintz G.S., Scalij M.J. et al. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenosis: Final results of randomized comparison with angiographic guidance (TULIP Study). Circulation. 2003; 107: 62-67.

8.    Gaster A.L., Slothuus Skjoldborg U., Larsen J. et al. Continued improvement of clinical outcome and cost effectiveness following intravascular ultrasound guided PCI: Insights from a prospective, randomized study. Heart. 2003; 89 (9): 1043-1049.

9.    Gil R.J., Pawlowski T., Dudek D. et al. Comparison of angiographically guided direct stenting technique with direct stenting and optimal balloon angioplasty guided with intravascular ultrasound. The multicenter, randomized trial results. Am. HeartJournal. 2007; 154 (4): 669-675.

10.  Frey A.W., Hodgson J.M., Muller C. et al. Ultrasound-guided strategy for provisional stenting with focal balloon combination catheter. Results from the randomized Strategy for Intracoronary ultrasound-guided PTCA and Stenting (SIPS) trial. Circulation. 2000; 102 (20): 2497-2502.

11.  Fitzgerald P.J., Oshima A., Hayase M. et al. Final results of the Can Routine Ultrasound Influence Stent Expansion (CRUISE) study. Circulation. 2000; 102 (5): 523-530.

12.  Sousa A., Abizaid A., Mintz G.S. et al. The influence of intravascular ultrasound guidance on the in-hospital outcomes after stent implantation: results from the Brazilian Society of Interventional Cardiology Registry - CENIC. J. Am. Coll. Cardiol. 2002; 39: 54A.

13.  Russo R.J., Attubato M.J., Davidson C.J. et al. Angiography versus intravascular ultrasound-directed stent placement: final results from AVID. Circulation. 1999; 100: I-234.

14.  Russo R.J., Silva P.D., Teirstein P.S. et al. A Randomized Controlled Trial of Angiography versus Intravascular Ultrasound-Directed Bare-Metal Coronary Stent Placement (The AVID Trial). Cathet Cardiovasc Intervent. 2009; 2: 113-123.

15.  Schiele F., Meneveau N., Vuillemenot A. et al. Impact of intravascular ultrasound guidance in stent deployment on 6-month restenosis rate: a multicenter, randomized study comparing two strategies - with and without intravascular ultrasound guidance. RESIST Study Group. REStenosis after IVUS guided Stenting. J. Am. Coll. Cardiol.1998; 32: 320-328.

 

Abstract:

Aim. Was to analyze atherosclerotic disease dynamics and long-term results (up to 5 years) after implantation of bare-metal stents (BMS) and sirolimus-eluting stents (SES) in patients with multivascular coronary disease

Methods and results. We have analyzed clinicaland angiographic results data of percutaneous coronary interventions (PCI) of 585 patients with multivascular coronary disease during 5-years of follow-up period. 264 patients were treated with BMS, 321 - with SES We used Cypher drug-eluting stents (sirolimus-eluting stents) in the first group and BX Velocity bare-metal stents in the second group of patients

During first year of follow-up the incidence of symptoms reoccurrence in BMS and SES groups was 22,3% and 11,8% (р < 0,05) repeated PCI was performed in 15,6% and 3,9% (р < 0,05), CABG - 2,8% and 0,3% (р < 0,05), the incidence of myocardial infarction (MI) was 1,4% and 0,9%. The restenosis rate in BMS and SES groups was 19,7% and 2,3% (р < 0,05), late thrombosis (LT) - 0,3% and 1,4% The survival without MACE was higher in SES group

During 5 years of follow-up the cumulative incidence of symptoms reoccurrence in BMS and DES groups was 30,7% and 22,7% repeated PCI was performed in 23,9% and 18,1% (р < 0,05), CABG - 6,4% and 4,7%, the incidence of myocardial infarction (MI) was 6,5% and 7,8%. The progression of atherosclerosis in early stented segments in BMS and SES groups was 6,6% and 10,1%, late thrombosis (LT) - 0,4% and 2,1%. There was no difference in survival without MACE between groups

Conclusions. By the end of the first year of follow-up the incidence of angina reoccurrence and repeat revascularization in patients with multivascular coronary disease was higher in BMS group compared with SES group. The survival without MACE was also higher in SES group. By the end of the fifth year of follow-up there was no difference in angina reoccurrence, repeated revascularization and surviva without MACE because the late thrombosis and atherosclerosis progression in early stented segments was more common in DES group. 

 

References 

 

1     Henderson R.A. et al. Seven year outcome in the RITA-2 trial. Coronary angioplasty versus medical therapy. Ibid. 2003; 42: 1161-1170.

 

 

 

2.    Pocock S.J. et al. Quality of life after coronary angioplasty or continued medical treatment for anginan. Three year follow up in the RITA-2 trial. J. Am. Col. Cardiol. 2000; 35:907-914.

 

 

 

3.    Sculpher M.J. et al. Coronary angioplasty versus medical therapy for angina. Health service costs based on the Second Randomized Intervention Treatment oj Angina (RITA-2) trial. Eur. Heart. J. 2002; 23: 1237-1239.

 

 

 

4.    Serruys P. W. et al. For the Benestent Study Group. A comparison of balloon-expandable stent implantation with balloon angioplasty in patients with coronary artery disease. N. Engl. J. Med. 1994; 331: 489-495.

 

 

 

5.    Hueb W. et а!. The medicine, angioplasty or surgery study (MASS-II). A randomized, controlled clinical trial of three therapeutic strategies for multivessel согоnary artery desease. J. Ат. СоИ. Cardiol.   2004;  43: 1743-1751.

 

 

 

6.    Orlich D. et al. Treatment of multivessel coronary artery disease with sirolimus-eluting stent implantation: immediate and mid-term results. J. Am. Coll. Cardiol. 2004; 43: 1154-1160.

 

 

 

7.    Буза В.В., Лопухова В.В., Карпов Ю.А. Поздние тромбозы после имплантации стентов с лекарственным покрытиемКардиология. 2007; 6: 85-86.

 

 

 

8.    Camenzind E., Steg P.G., Wijns W. Stent thrombosis late after implantation of first-generation drug-eluting stents. А cause for concern. Circulation. 2007; 115: 1440-1455.

 

 

 

Abstract:

Aim. Was to study long-term results of drug eluting stents implantation: angiographic frequency of prolong stenosis, frequency of restenosis, endotelization dynamics, and other morphological indicators on the base of intravascular ultrasound (IV-US)

Materials and methods. The research consisted of 220 patients with angina pectoris or/and myocardial ischemic indexes: all of them were after drug eluting stents implantation. 174 patients on the first year and 82 on the second were underwent coronaroventriculography Double antiaggregant theraphy was given on the first year to 198(90%) patients, on the second - 21(9,5%)

Results. The whole angiographic success was 89,5%. 44% patients were underwent of lateral arterial branches defense. Unsuccessfu stenting was due to technical impossibility of movement threw variated coronar arteries segment in 5%; 1,8% was due to incomplete disclosing of stent; 2,7% - occlusion of lateral arterial branch

Conclusions. On the base of IV-US, at the end of the 1st year, 40% stents had full endotelization, at the end of the 2nd - 91%. Double antiaggregant theraphy was given to 99,1% patients on the first year. All coronary situations (morbidity, heart stroke, restenosis) was much more ess, than on the 2nd years, on which drug therapy was given only to 9,6% patients.

 

References 

1.    G. Ertaio et al. Late stent thrombosis, endothelialisation and drug-eluting stents. Neth. Heart. J. 2009l; 17 (4): 177-180.

2.    Ako J. et al. Late incomplete stent apposition after sirolimus-eluting stent implantation. A serial intravascular ultrasound analysis. J. Am. Coll. Cardiol. 2005; 46 (6): 1002-1005.

3.    Virmani R. et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent. Should we be cautious? Circulation. 2004; 109 (6): 701-705.

4.    Lee S.H., Chae J.K., Ko J.K. Consecutively developed late stent malappositions following the implantation of two different kinds of drug-eluting stents associated with spontaneous healing. Int. J. Cardiol. 2009; 134 (1): 7-10.

5.    Yamen E. et al. Late incomplete apposition and coronary artery aneurysm formation following paclitaxel-eluting stent deployment. Does size matter? J. Invasive. Cardiol. 2007; 19 (10): 449-450.

6.    Yasumi U. and Yasuto U. Angioscopic evaluation of neointimal coverage of coronary stents. Curr. Cardiovasc. Imaging. Rep. 2010; 3 (5): 317-323.

7.    Mayraj A. et al. Comparison of one year clinical outcomes with paclitaxel-eluting stents versus bare metal stents in everyday practice. Can. J. Cardiol. 2008; 24 (10): 771-775.

8.    Kim J.S. et al. Comparison of neointimal coverage of sirolimus-eluting stents and paclitaxel-eluting stents using optical coherence tomography at 9 months after implantation. Circ. J. 2010; 74: 320-326.

9.    Suwaidi J.A. et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000; 101: 948-954.

10.  Hofma S.H. et al. Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. Eur. Heart. J. 2006; 27: 166-170.

11.  Togni M. et al. Sirolimus-eluting stents associated with paradoxic coronary vasoconstriction. J. Am. Col. Cardiol. 2005; 46: 231-236.

12.  Shin D.I. et al. Drugeluting stent implantation could be associated with long-term coronary endothelial dysfunction. Comparison between sirolimus-eluting stent and paclitaxel-eluting stent. Int. Heart. J. 2007; 48: 553-567.

13.  Takano M. et al. Angioscopic differences in neointimal coverage and in persistence of thrombus between sirolimus-eluting stents and bare-metal stents after 6-month implantation.     Eur.     Heart.    J.     2006; 27: 2189-2195.

14.  Moore P. et al. A randomized optical coherence tomography study of coronary stent strut coverage and luminal protrusion with rapamycin-eluting stents. JACC Cardiovasc. Interv. 2009.

15.  Oyabu J. et al.   Angioscopic evaluation of neointimal coverage. Sirolimus drug-eluting stent      versus bare metal stent. Am. Heart. J. 2006; 52: 1168-1174.

16.  Kotani J. et al. Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings. J. Am. Col. Cardiol. 2006; 47: 2108.

17.  Wilson G.J. et al. Comparison of inflammatory response after implantation of sirolimus- and paclitaxel-eluting stents in porcine coronary arteries. Circulation. 2009; 120: 141-149.

18.  Higo T. et al. Atherosclerotic and thrombogenic neointima formed over SES. JACC Cardiovasc. Imaging. 2009; 2: 616-624

19.  Latchumanadhas K. et al. Early coronary aneurysm with paclitaxel-eluting stent. Indian. Heart. J. 2006; 58 (1): 57-60.

20.  Levisay J.P., Roth R.M., Schatz R.A. Coronary artery aneurysm formation after drug-eluting stent implantation. Cardiovasc. Revasc. Med. 2008; 9 (4): 284-287.

21.  Chen D. et al. Spontaneous resolution of coronary artery pseudoaneurysm consequent to percutaneous intervention with paclitaxel-eluting  stent.   Tex.  Heart.   Inst. J.   2008; 35 (2): 189-192.

22.  Lee S.E. et al. Very late stent thrombosis associated with multiple stent fractures and peri-stent aneurysm formation after sirolimus-eluting stent implantation. Circ. J. 2008; 72 (7): 1201-1204.

23.  Kim J.S. et al. Delayed stent fracture after successful sirolimus-eluting stent (Cypher®)  implantation.  Korea

 

Abstract:

Aim. To compare safety and efficiency of drug-eluting stents (DES) and bare metal stents (BMS) implantation for coronary artery disease (CAD).

Materials and methods. 230 patients with CAD were divided in 2 groups: patients in group 1 received DES; in group 2 we performed BMS implantation.

Results. Long-term results (over 12 months follow-up) of DES primary implantation reduces risk of the angiographic restenosis by 15% compared to BMS (р < 0,001).

Conclusions. Notwithstanding low basic risk of restenosis, DES demonstrate no statistically significant advantages in MACE rate. It is also shown that DES implantation is associated with higher mortality and greater risk of non-cardiac complications, related to prolonged antiplatelet therapy. Thus, decision of DES implantation should be made in consideration of the patients' tolerance for double antiplatelet therapy, risk of bleeding, possible elective surgery, as well as any pre-procedure immune system disturbances. 

 

References 

 

1.    Sigwart U., Puel J., Mirkovitch V., Joffre F. et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty.New. Engl. Med. 1987; 316: 701-706.

 

 

 

 

2.    Van der Giessen W.J., Lincoff A.M., Schwartz R.S.  et al.  Marked inflammatory sequel to implantation of biodegradable and nonbiode-gradable polymers in porcine coronary arteries. Circulation. 1996; 94: 1690-1697.

 

 

 

 

3.    Бокерия Л.А., Алекян Б.Г., Голухова Е.З. и др. Применение стентов с лекарственным антипролиферативным покрытием в лечении больных ишемической болезнью сердца. Креативная кардиология. 2007; 1:193-198.

 

 

 

 

4.    Befeyter PJ. Percutaneous coronary intervention for unstable coronary artery disease. Text-book of interventional cardiology, 4th ed. by Topol E. Philadelphia. W.B. Saunders Company. 2003: 183-199.

 

 

 

 

5.    Bauters C., Lablanche J.M., McFadden E.P. et al. Clinical characteristics and angiographic follow-up of patients undergoing early or late repeat dilation for a first restenosis. J. Am. Coll. Cardiol. 1992; 20: 845-848.

 

 

 

 

6.    Бабунашвили А.М., Юдин И.Е., Дундуа Д.П. и др. Стенты с лекарственным покрытием при лечении диффузных атеросклеротиче-ских поражений коронарных артерий. Актуальные вопросы болезней сердца и сосудов. 2007; 4: 57-63.

 

 

 

 

7.    Waters R.E. 3 cases following DES for in-stent-restenosis (at 16, 20, 43 mo) - shortly after interruption of antiplatelet Tx. Catheter. Car-diovasc. Interv. 2005; 4: 107-115.

 

 

 

 

8.    PeterJ., Fitzgerald S. etal. Is angiographic late loss still a worthwhile surrogate endpoint in DES trials? Circulation. 2006; 54: 237-291.

 

 

 

Comparative estimation of mechanical properties of coronary stent «sinus»



DOI: https://doi.org/10.25512/DIR.2014.08.1.11

For quoting:
Kudryashov A.N., Lopotovsky P.Yu. "Comparative estimation of mechanical properties of coronary stent «sinus»". Journal Diagnostic & interventional radiology. 2014; 8(1); 70-77.

 

Abstract:

Aim: was to evaluate mechanical properties of coronary stent «SINUS» and compare them with mechanical properties of coronary stents of foreign production.

Material and methods: experimental group included coronary stents «SINUS», made of cobalt-chromium alloy L605 laser cut (H design and L2). The comparison group included stents: MULTI-LINK Vision, MULTI-LINK 8 (Abbott Vascular), Presillion (Cordis, Medinol), Integrity (Medtronic). With the help of certified device tests were conducted on all stents: passage (ability to overcome the delivery system for corners) , the geometrical uniformity of diameter upon radial stability, rigidity on the long axis, the amount of self-reducing the diameter after removal of the pressure in the balloon («Recoil»); in relation to stents "SINUS" independent testing laboratory DynatekLabs (USA) was carried out endurance test under pulsating radial exposure for 380 million cycles in accordance with ASTM F2477-07, required to obtain the approval of FDA USA.

Results: а stents were successfully tested for passage through an angle of 90° with the radius of rotation from 30 mm to 7.5 mm. Indicator geometric irregularities along the length of the stent diameter for all stents in the range ±1,5%, which corresponds to the measurement error. Test results radial stability upon compression up to 80% of the nominal diameter of the stent have been least Multi-Link Vision 0,28±0,02 N / mm and the highest in stent Integrity 0,65±0,02 N/mm. Test results for radial stability of the stent, «SINUS» with H-design is similar to the results for the Multi-Link stent and stent 8 Presillion 0,37±0,02 N/mm , and the stent, «SINUS» with L2- close design 0.52±0,02 N/mm . Test results on the ability to repeat the curved shape of the stent showed the smallest vessel in stent rigidity «Sinus» H-design, the highest in the stent Multi-Link 8. Remaining stents ascending rigidity «SINUS» L2- design , Presillion, Integrity, Multi-Link Vision. Test «Recoil» showed the lowest value of 4.5% in the stent Multi-Link Vision, the largest in Multi-Link stent 8-5.4% , the variation of this parameter between stents insignificant - ±0,5%, within the error of measurement of diameter due to the complex geometry of the stent. Test results have shown persistence DynatekLabs mechanical integrity of the structure and the absence of stent migration«SINUS» after 380 million cycles (equivalent to 10 years of implantation with an average heart rate = 72 beats/min) radial pulsating effects .

Conclusion: this study showed that stents «SINUS» have significant differences from the comparison group of stents in terms of: Recoil, passage of 90° angular rotation, uniform diameter disclosed stent radial strength fatigue. In terms of radial stability stents «SINUS» meet or exceed stents comparison groups, second only to the stent «Integrity». In terms of adaptability, in the open state , the curved profile of the vessel stents «SINUS» have the best performance with respect to comparison groups. 

 

References

1.     Protopopov A.V., Kochkina T.A., Puzyr' A.P., Efremov S.P., Fedchenko Ja.O., Balan A.N., Kokov L.S. «Biomehanicheskie issledovanija stentov razlichnyh konstrukcij i materialov», v Rukovodstve «Sosudistoe i vnutriorgannoe stentirovanie» [«Biometric examination of stents with diffent construction and materials», in Manual «Vessel and intraorganic stenting» ]. 2003; 15-19 [In Russ].

2.     FDA: Federal Register/ Vol. 76, No. 49 / Monday, March 14, 2011 / Notices, page 13636. http://www.gpo.gov/fdsys/pkg/FR-2011-03-14/pdf/2011-5815.pdf

3.     Azarov A.A., Barbarash O.L., Ganjukov V.I., Barbarash L.S. Prediktory rannih trombozov stentov posle jekstrennogo chreskozhnogo koronarnogo vmeshatel'stva u pacientov s ostrym infarktom miokarda v sochetanii s saharnym diabetom 2-go tipa [Predictors of early stent trombosis after urgent PCI in patients with IM in combination with diabetes mellitus]. Diagnosticheskaja i intervencionnaja radiologija. 2012; 6(4): 43-50 [In Russ].

4.     Osiev A.G., Bajstrukov V.I., Birjukov A.V. Problema restenoza vnutri ranee implantirovannyh stentov koronarnyh artery [Problem in-stent restenosis in coronary artery]. Diagnosticheskaja iintervencionnajaradiologija. 2012; 6(4): 89-96 [In Russ].

5.     Barra J.A., Volant A., Leroy J.P., et al. Constrictive perivenous mesh prosthesis for presentation of vein integrity. J. Thorc. Cardiovasc. Surg. 1986; 92: 330-336.

6.     Barth K.H., Virmani R., Froelich J., Takeda Т., Lossef S.V., Newsome J., Jones R., Lindisch D. Pared comparision of vascular wall reactions to Palmaz stents, Strecker Tantalum stents and Wallstents in canine iliac and femoral arteries. Circulation. 1996; 93(12): 2161-2169.

7.     Leung D.Y.M., Glagov S., Mathews M.D. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle coils in vitro. Science. 1976; 191: 475-477. 

 

Abstract:

Aim. Was to demonstrate our experience of using the stent-assistant technology for treatment of thromboembolic complication during endovascular procedures in extra- and intracranial arteries.

Materials and methods. Five patients with thromboembolic complication were successfully treated using stent-assistant technology In one case thromboembolic complication appeared during stenting of ICA, another - during performing of diagnostic cerebral angiography In 3 cases thromboembolic complications appeared during endovascular occlusion of intracranial artery. In four cases we used stent Solitaire (Covidien) in one case - Enterprise (Codman).

Results. In all cases we achieved full restoration of blood flow in intracranial vessels. Three patients were discharged without any neurological deficit. Two patients were discharged with minimal neurological deficit (mRS 1).

Conclusion. Stent-assistant technology can be successfully used in treatment of thromboembolic complications during endovascular procedures in extra- and intracranial arteries.

 

References

1.     Connors J., Sacks D., Furlan A., et al. Training, competency, and credentialing standards for diagnostic сervicocerebral angiography, carotid stenting, and cerebrovascular intervention: a joint statement from the American academy of neurology, American association of neurological surgeons1, American society of interventional and therapeutic radiology, American society of neuroradiology, congress of neurological surgeons, AANS/CNS cerebrovascular section, and society of interventional radiology. Radiology. 2005; 234: 26-34.

2.     Qureshi I., Luft R., Sharna M., et al. Prevention and treatment of tromboembolic and ischemic complications associated with endovascular procedures: Part I. Pathophysiological and pharmacological features. Neurosurgery. 2000; 46: 1344-1359.

3.     Bracard S., Abdel-Kerim A., Thuillier L., et all. Endovascular coil occlusion of 152 middle cerebral artery aneurysms: initial and midterm angiographic and clinical results. J. Neurosurg. 2010; 112: 703-708.

4.     Fujii Y., Takeuchi S., Sasaki O., et al. Hemostasisin spontaneous subarachnoid hemorrhage. Neurosurgery. 1995; 37: 226-234.

5.     Blackham A., Meyers P., Abruzzo T., et al. Endovascular therapy of acute ischemic stroke: report of the standards of practice committee of the society of neurointerventional. J. NeturoIntevent. Surg. 2012; 4: 87-93.

6.     Costalat V., Machi P., Lobotesis K., et al. Rescue, combined, and stand-alone thrombectomy in the management of large vessel occlusion stroke using the solitaire device: a prospective 50-patient single-center study: timing, safety, and efficacy. Stroke. 2011; 42:1929-1935.

7.     Gonzalez F., Jabbour P., TJoumakaris S., et all. Temporary endovascular bypass: rescue technique during mechanical thrombolysis. Neurosurgery. 2012; 70: 245-252.

8.     Saver J., Jahan R., Levy E.I., et all. Primary results of the Solitaire With Intention for Thrombectomy (SWIFT) multicenter, randomised trial. Presented at the international stroke ranference 2012. 

 

Abstract:

The article presents a literature review of the use of optical coherence tomography in interventional cardiology. The method of optical coherence tomography is described in details, as well as its comparison with other methods of intravascular imaging. Direct results of the use of optical coherence tomography in clinical practice in the performance of percutaneous coronary intervention have been analyzed. Article describes possibilities of assessment of long-term results after interventional procedures using optical coherence tomography in patients with coronary heart disease. Article notes possibilities of using optical coherence tomography to assess the effectiveness of treatment of patients with atherosclerotic coronary pathology using biodegradable stents.

 

References:

1.     Hiram G. Bezerra., Marco A. Costa., Guagliuni G. et al. Intracoronary Optical Coherence Tomography: A Comprehencive Review: Clinical and Research Applications. J.Am.Col. Cardiol. Intv. 2009; 42:1035-1046.

2.     Rollings A.M.,Ung-arunyawee R., Chak A., Wong R.C.K., Kobayashi K., SWivak M.V., Izatt J.A. Real time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design. Opr.left. 1999;24(19): 1358-1360.

3.     Adam M., Nguyenet F. T., Daniel L. M. et.al. Optical coherence tomography: a review of clinical development from bench to bedside. Journal of Biomedical Optics. 2007; 12(5): 1-13.

4.     Stephen T. Sum, , Sean P. Madden, Michael J. Hendricks, BS, Steven J. Chartier, and James E. Muller, Near-infrared spectroscopy for the detection of lipid core coronary plaques. [Spektroskopija V Blizhne-Infrakrasnoj Oblasti V Vyjavlenii Nestabil'nyh Ateroskleroticheskih Bljashek V Koronarnyh Arterijah)]. Diagnosticheskaja i intervencionnaja radiologija. 2012; 6(2): 39-51 [In Russ].

5.     Barlis P. A., Gonzalo N., SerruysP.et al.Multi-Center Evaluation of the Safety of Intra-Coronary Optical Coherence Tomography. Eurointervention. 2009; 5: 90-95.

6.     Prati F., Imola F., Mallus M. et al. Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. EuroIntervention.2010; 6:575-58.1

7.     Serruys P.W., Simon D. I., Costa M. et al. Clinical Research Compendium. A Summary of Cardiovascular Optical Coherence Tomography Literature. 2009; 3: 1-22.

8.     Prati F., Regar E., Gary Mintz S. et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. European Heart Journal. 2010; 31: 401-415.

9.     Kume T., Akasaka T., Kawamoto Т. е^ al. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J2006; 152(4):755-4.

10.   Prati F., Cera M., Ramazzotti V. et al. Safety and feasibility- of a new non-occlusive technique for facilitated intracoronary optical coherence tomography (OCT) acquisition in various clinical and anatomical scenarios. Eurointerv. 2007;3:365-370.

11.   Gonzalo N., Patrick W., Serruys P.W., Peter Barlis., et al. Multi-modality intra-coronary plaque characterization: A pilot study. International Journal of Cardiology.2008; 138(1):32-9.

12.   Gonzalo N., Serruys P. W., Barlis P. et al. Multi-modality intra-coronary plaque characterization: A pilot study. 2008; Optical Coherence Tomography for the Assessment of Coronary Atherosclerosis and Vessel Response after Stent Implantation. 2010; 4.3:141-153.

13.   Chia S., Raffel O.C., Takano M. et al. Association of statin therapy with reduced coronary plaque rupture: An optical coherence tomography study. Coron Artery Dis. 2008; 19(4):237-42.

14.   Barlis P., Serruys P.W., Gonzalo N. et al. Assessment of culprit and remote coronary narrowings using optical coherence tomography with long-term outcomes. Am J Cardiol 2008; 15: 102(4):391-5.

15.   Jang I .K., Tearney G.J., MackNeill D. et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005; 111(12):1551-1555.

16.   MacNeill B., Briain D.,. Bouma B.E. et al.Focal and multifocal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J. Am. Coll. Cardiol. 2004; 44:972-9.

17.   Takarada S., Imanishi T., Kubo T. et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: Assessment by optical coherencetomography study. Atherosclerosis. 2009; 202(2):4917.

18.   Kubo T., Imanishi T., Takarada S. et al. Assessment of culprit lesion morphology in acute myocardial infarction: Ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll Cardiol.2001] 50(10):933-9.

19.   Larry J., Diaz-Sandov., Diaz-Sandoval. et al. Optical coherence tomography as a tool for percutaneous coronary interventions. Catheter Cardiovasc. Interv. 2005; 65(4):492-6.

20.   Gutierrez H., Arnold R., Gimeno F. et al. Optical coherence tomography: Initial experience in patients undergoing percutaneous coronary intervention. Rev. Esp. Cardiol. 2008; 61(9): 976-9.

21.   Tanigawa J., Barlis P., Kaplan S. et al. Stent strut apposition in complex lesions Using optical coherence tomography. Am. J. Cardiеl. 2006; 98(1) :97 M.

22.   Gonzalo N., Barlis P., Serruys P.W. et al. Incomplete Stent Apposition And Delayed Tissue Coverage Are More Frequent In Drug Eluting Stents Implanted During Primary Percutaneous Coronary Intervention For ST Elevation Myocardial Infarction Than In Drug Eluting Stents Implanted For Stable/Unstable Angina. Insights from Optical Coherence Tomography. Cardiovasc Interv. 2009; 2(5): 445-52.

23.   Gonzalo N., Serruys P.W. Optical coherence tomography (OCT) in secondary revascularisation: stent and graft assessment. Euro.Intervention. 2009; 5: D93-D100.

24.   Tanigawa J., Barlis P., Dimopoulos K., Di Mario. Optical coherence tomography to assess malapposition in overlapping drug-eluting stents. EuroInterv. 2008; 3: 580-583.

25.   Gonzalo N., Garcia-Garcia H.M., Serruys P.W. et al. Reproducibility of quantitative per strut stent analysis with OCT. EuroIntervention. 2009; 5(2): 224-32.

26.   Gonzalo N., Serruys P.W., Okamura T. et al. Optical Coherence Tomography Assessment Of The Acute E?ects Of Stent Implantation On The Vessel Wall. A Systematic Quantitative Approach. E.Heart. 2009; 95(23): 1913-1919.

27.   Gonzalo N., Serruys P.W., Okamura T. et al. Optical Coherence Tomography Patterns of Stent Restenosis. Am. Heart J. 2009; 158(2): 284-93.

28.   Gonzalo N., Serruys P.W., Okamura T. et al. Relation between plaque type and dissections at the edges after stent implantation: an optical coherence tomography study. Optical Coherence Tomography for the Assessment of Coronary Atherosclerosis and Vessel Response after Stent Implantation. 2010; 6.5:249-261.

29.   Xie Y., Takano M., Murakami D. et al. Comparison of neointimal coverage by optical coherence tomography of a sirolimus-eluting stent versus a bare-metal stent three months after implantation. Am. J. Cardiol. 2008;102:27-31.

30.   Chen B.X., Ma F.Y., Luo W. et al. Neointimal coverage of bare-metal and sirolimus-eluting stents evaluated with optical coherence tomography. Heart. 2008; 94:566-70.

31.   Matsumoto D., Neointimal coverage of sirolimus-eluting stents at 6-month follow-up: evaluated by optical coherence tomography. Eur. Heart J. 2007; 28:96 1-7.

32.   Yao Z.H., Matsubara T., Inada T, et al. Neointimal coverage of sirolimus-eluting stents 6 months and 12 months after implantation: evaluation by optical coherence tomography. Chin. Med. J. 2008;121:503-7.

33.   Takano M., Yamamoto M., Inami S. et al. Long-term follow-up evaluation after sirolimus-eluting stent implantation by optical coherence tomography: douncovered struts persist. J. Am. Cardiol. 2008; 51(9):968-9.

34.   Finn A.V., Joner M., Nakazawa G. et al. Pathological correlates of late drug-elutingstent thrombosis: strut coverage as a marker of endothelialization. Circulation. 2007;115(18):2435-41.

35.   Stone G., Moses J.W., Ellis S.G. et al. Safety and ef?cacy of sirolimus- and paclitaxel-eluting coronary stents. J. Med. 2007; 356(10):998-10.

36.   Kubo T., Kitabata H., Kuroi A .et al. Comparison of vascular response after sirolimus eluting stent implantation between patients with unstable and stable angina pectoris. A serial optical coherence tomography study. J. Am. Coll. Cardiol. 2008;1.

37.   Guagliumi G., Sirbi V., Costa M.A. A Long -term Strut Coverage of Paclitaxel eluting Stents Compared with Bare-Metal Stents implanted During Primary PCI in Acute Myocardial infarction A PROSPECTIVE, Randomised, Controled Study Perfomed with OCT. Horizons- OCT. Circulation. 2008;118:231.

38.   Barlis P., Regar E., Serruys PW. et al. An Optical Coherence Tomography Study of a Biodegradable versus Durable Polymer-Coated Limus-Eluting Stent: A LEADERS Trial Sub-Study. Eur. Heart J. 2010; 31:165-76.

39.   Serruys PW., Ormiston J.A., Onuma Y. et al. Bioabsorbable everolimus-eluting system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009; 373(9667): 897-910. 

 

 

Abstract:

Aim: was to analyze long-term results of coronary artery stenting with drug-eluting stents «Zotarolimus» and bare metal stents in patients with a concomitant diabetes mellitus type II.

Materials and methods: 37 patients with ischemic heart disease and concomitant diabetes mellitus type II were selected for analysis; they underwent implantation of stents without drug coverage («Intergrity» «Medtronic») or stents with drug-eluting «Zotarolimus» («Resolute Integrity» «Medtronic»). All patients were divided into 2 groups: first group consisted of 11 patients, who underwent implantation of bare metal stents, second group - 26 patients who underwent implantation of drug-eluting stents, «Zotarolimus». Follow-up period was 26±4 months. Criteria of stenting efficiency were: angiographic assessment of coronary arteries anatomy in control angiography after stent implantation, reccurence of angina or functional class increase, the survival rate in the nearest postoperative period, before discharge, but not more than 30 days, and in the early post-operative period up to 6 months. In the medium-distant post-operative period - 12 months, and in the late postoperative period - 24 months.

Results: all patients underwent successfully performed endovascular revascularization. The optimal angiographic result was achieved in all patients. Regression of ischemic changes on ECG data and increase myocardial contractility by echocardiography data also were marked in all patients. In long-term follow-up period, in 5 (45%) patients with bare metal stents we noted the appearence of hemodynamically significant restenosis, that needed performance of secondary angioplasty with stenting.

Conclusion: the use of antiproliferative drug-eluting stents «Zotarolimus» is possible in treatment of patients with coronary artery disease and comorbid diagnosis of diabetes mellitus type II. Bare metal stents in coronary stenting in patients with concomitant diagnosis of diabetes mellitus type II is impractical due to developing in-stent restenosis (45% of patients). 

 

References

1.     Kereiakes D.J., Cutlip D.E., Applegate R.J., Wang J., Yaqub M., Sood P., Su X., Su G., Farhat N., Rizvi A., Simonton C.A., Sudhir K., Stone G.W. Outcomes in diabetic and nondiabetic patients treated with everolimus- or paclitaxel-eluting stents: results from the SPIRIT IV clinical trial (Clinical Evaluation of the XIENCE V Limus Eluting Coronary Stent System). J. Am. Coll. Cardiol. 2010 Dec 14; 56(25):2084-2089.

2.     Petrova K.N., Kozlov S.G., Ljakishev A.A., Savchenko A.P. Vlijanie saharnogo diabeta 2 tipa na rezul'taty jendovaskuljarnogo lechenija IBS s pomoshhju stentov s lekarstvennym pokrytiem (dannye godichnogo nabljudenija) [Influence of diabetes mellitus type 2 on results of endovascular treatment of IHD with help of drug-eluting stents (data monitoring for one year)]. Kardiohgija. 2006; 12: 22-6 [In Russ].

3.     Abizaid A., Costa M.A., Blanchard D. et al. Sirolimus-Eluting Stents Inhibit Neointimal Hyperplasia in Diabetic Patients. Insights from the RAVEL Trial. Eur. Heart J. 2004; 25: 107-12.

4.     Moussa I., Leon M.B., Baim D.S. et al. Impact of Sirolimus-Eluting Stents on Outcome in Diabetic Patients. Circulation .2004; 109: 2273-8.

5.     Hermiller J.B., Raizner A., Cannon L. et al. TAXUS-IV Investigators. Outcomes With the Polymer-Based Paclitaxel-Eluting TAXUS Stent in Patients With Diabetes Mellitus: the TAXUS-IV trial. JACC. 2005; 45: 1172-9.

6.     Sabate M., Jim Onez-Quevedo P., Angiolillo D.J. et al. Randomized Comparison of Limus-Eluting Stent Versus Standard Stent for Percutaneous Coronary Revascularization in Diabetic Patients. Circulation. 2005; 112: 2175-83.

7.     Jensen J., Lagerqvist B., Aasa M., Sarev T., Nilsson T., Tornvall P. Clinical and angiographic follow-up after coronary drug-eluting and bare metal stent implantation. Do drug-eluting stents hold the promise? J. Intern. Med. 2006 Aug; 260(2):118-24.

8.     Jain A.K., Lotan C., Meredith I.T., Feres F., Zambahari R., Sinha N., Rothman M.T. E-Five Registry Investigators. Twelve-month outcomes in patients with diabetes implanted with a zotarolimus-eluting stent: results from the E-Five Registry. Heart. 2010 Jun; 96(11):848-53. doi: 10.1136/hrt.2009.184150.

9.     Stettler C., Allemann S., Egger M. et al. Efficacy of drug eluting stents in patients with and without diabetes mellitus: indirect comparison of controlled trials. Heart. 2006; 92: 650-7.

10.   Scheen A.J., Warzee F. Diabetes Is Still a Risk Factor for Restenosis After Drug-Eluting Stent in Coronary Arteries. Diabetes Care. 2004; 27: 1840-1.

11.   Park K.W., Lee J.M., Kang S.H., Ahn H.S., Kang H.J., Koo B.K., Rhew J.Y, Hwang S.H., Lee S.Y, Kang T.S., Kwak C.H., Hong B.K., Yu C.W., Seong I.W., Ahn T., Lee H.C., Lim S.W., Kim H.S. Everolimus-eluting xience v/promus versus zotarolimus-eluting resolute stents in patients with diabetes mellitus. JACC. Cardiovasc. Interv. 2014 May;7(5):471-81. doi: 10.1016/j.jcin.2013.12.201. 

 

 

Abstract:

Aim: was to provide data of examination of patients of single-center randomized clinical trial ORENBURG (results of angiography, intravascular ultrasound (IVUS), optical coherence tomography (OCT), which were made at different stages of primary operations).

Materials and methods: 1032 patients were enrolled into this trial and uniformly distributed into 6 subgroups, representing 6 different types of drug-eluted stents implanted. Patients in this study were also divided into IVUS guidance and angiography guidance subgroups in 2 to 1 ratio. All patients underwent the OCT examination at the final stage of the procedure, and according to OCT results, no additional interventions were performed. Data of instrumental studies was analyzed with use of modern statistical methods and programs.

Results: according to angiographic data, in-segment lesion length and lumen volume before the operation were higher in IVUS group. After intervention, lumen volume was still higher, and % diameter stenosis and % area stenosis were lower in IVUS group in comparison with angiography group. Comparison of IVUS and angiography data after predilatation showed that IVUS was associated with bigger absolute values of minimum lumen diameter (MLD) and minimum lumen area (MLA), while % diameter stenosis and % area stenosis were similar between two groups. At control IVUS and OCT studies the region of the maximum residual stenosis did not usually match with the site of the baseline maximum stenosis. Quantitative data in these segments significantly differed. According to control IVUS data, additional angioplasty in stent was needed in 10,1 % of patients. Additional procedure allowed to improve all quantitative indicators. Implantations of different types of stents were performed using similar interventional technic but randomized by selection of stent eluting. Nevertheless, initial technical parameters of endoprosthesis affected quantitative results of the implantation. Nobori stent showed biggest differences in quantitative results of implantation in comparison with other types of stents and to the whole group.

Conclusion: ORENBURG is second large trial in terms of volume, and second large trial that was initiated, and which was dedicated to the comparison of interventional strategies using drug-eluting stents under intravascular visualization or angiography guidance. The minimal incidence of MACE was registered during the period of in-hospital stay Only one case of cardiac death was registered, and it was not associated with the region of the treated artery. Results of ORENBURG trial confirm the tendency to absolute measures recieved by intravascular methods of visualization, and used for characterization of defeated vessel excess absolute measures received by angiography.

 

References

1.     Intravascular Ultrasound. Ad by Erbel R., Roelandt J.R.T.C., Ge J., Gorge G. London: Martin Dunitz. 1998, 284.

2.     Mintz G.S. Intracoronary Ultrasound. London and New York: Taylor & Francis. 2005, 408.

3.     Colombo A., Tobis J. Techniques in Coronary Artery Stenting. London: Martin Dunitz. 2000, 422.

4.     Demin V.V. Klinicheskoe rukovodstvo po vnutrisisudistomu ultrazvukovomu skanirovaniyu [Clinical guide to intravascular ultrasound]. Orenburg: Yuzhnyj Ural [South Ural]. 2005; 400 [In Russ].

5.     Demin V.V., Zelenin V.V., Zheludkov A.N. et al. Vnutrisosudistoe ultrazvukovoe skanirovanie pri intervencionnih vmeshatelstvah na koronarnih arteriyah: optimalnoe ptimenenie I kriterii ocenki. [Intravascular ultrasound scanning during coronary interventions: optimum application and assessment criteria]. International Journal of Interventional Cardioangiology. 2003; 1: 66-72 [In Russ].

6.    Sandrikov V.A., Demin V.V., Revunenkov G.V. Kateternaya echographia serdechno-sosudistoy sistemy I polostnyh obrazovaniy [Catheter echography of cardiovascular system and cavitary structures]. Moscow: «Firma Strom». 2005; 256 [In Russ].

7.     2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A Report of the AmericanCollege of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011; 124:e574-e651.

8.     2013 ESC guidelines on the management of stable coronary artery disease. The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. European Heart Journal. 2013; 34: 2949-3003.

9.     2014 ESC/EACTS Guidelines on myocardial revascularization. The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EAPCI). European Heart Journal. 2014; 35: 2541-2619.

10.   Oemrawsingh P.V., Mintz G.S., Scalij M.J. et al. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenosis: Final results of randomized comparison with angiographic guidance (TULIP Study). Circulation. 2003; 107: 62-67.

11.   Gaster A.L., Slothuus Skjoldborg U., Larsen J. et al. Continued improvement of clinical outcome and cost effectiveness following intravascular ultrasound guided PCI: Insights from a prospective, randomized study. Heart. 2003; 89 (9): 1043-1049.

12.   Gil R.J., Pawlowski T., Dudek D. et al. Comparison of angiographically guided direct stenting technique with direct stenting and optimal balloon angioplasty guided with intravascular ultrasound. The multicenter, randomized trial results. Am. Heart Journal. 2007; 154 (4): 669-675.

13.   Frey A.W., Hodgson J.M., Muller C. et al. Ultrasound-guided strategy for provisional stenting with focal balloon combination catheter. Results from the randomized Strategy for Intracoronary ultrasound-guided PTCA and Stenting (SIPS) trial. Circulation. 2000; 102 (20): 2497-2502.

14.   Fitzgerald P.J., Oshima A., Hayase M. et al. Final results of the Can Routine Ultrasound Influence Stent Expansion (CRUISE) study. Circulation. 2000; 102 (5): 523-530.

15.   Sousa A., Abizaid A., Mintz G.S. et al. The influence of intravascular ultrasound guidance on the in-hospital outcomes after stent implantation: results from the Brazilian Society of Interventional Cardiology Registry - CENIC. J. Am. Coll. Cardiol. 2002; 39: 54A.

16.   Russo R.J., Attubato M.J., Davidson C.J. et al. Angiography versus intravascular ultrasound-directed stent placement: final results from AVID. Circulation. 1999; 100: I-234.

17.   Russo R.J., Silva P.D., Teirstein P.S. et al. A Randomized Controlled Trial of Angiography versus Intravascular Ultrasound-Directed Bare-Metal Coronary Stent Placement (The AVID Trial). Cathet Cardiovasc Intervent. 2009; 2: 113-123.

18.   Parise H., Maehara A., Stone G.W. et al. Metaanalysis of randomized studies comparing intravascular ultrasound versus angiographic guidance of percutaneous coronary intervention in pre-drug-eluting stent era. Am. J. Cardiol. 2011; 107 (3): 374-382.

19.   Casella G., Klauss V., Ottani F. et al. Impact of intravascular ultrasound-guided stenting on long-term clinical outcome: a meta-analysis of available studies comparing intravascular ultrasound-guided and angiographically guided stenting. Cathet Cardiovasc Intervent. 2003; 59: 314-321.

20.   Mintz G.S., Weissman N.J. Intravascular ultrasound in the drug-eluting stent era. JACC. 2006; 48 (3): 422-428.

21.   Claessen B.E., Mehran R., Mintz G.S., et al. Impact of intravascular ultrasound imaging on early and late clinical outcomes following percutaneous coronary intervention with drug-eluting stents. JACC; Cardiovasc Interv. 2011; 4 (9): 974-981.

22.   Hur S.-H., Kang S.-J., Kim Y-H., et al. Impact of intravascular ultrasound-guided percutaneous coronary intervention on long-term clinical outcomes in a real world population. Cathet Cardiovasc Intervent. 2013; 81: 407-416

23.   Roy P., Steinberg D.H., Sushinsky S.J., et al. The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents. European Heart Journal. 2008; 29: 1851-1857.

24.   Witzenbichler B., Maehara A., Weisz G. et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the assessment of dual antiplatelet therapy with drug-eluting stents (ADAPT-DES) study. Circulation. 2014; 129 (4): 463-470.

25.   De la Torre Hernandez J.M., Baz Alonso J.A., Gomez Hospital J.M. et al. Clinical impact of intravascular ultrasound guidance in drug-eluting stent implantation for unprotected left main coronary disease: pooled analysis at the patient-level of 4 registries. JACC; Cardiovasc Interv. 2014; 7 (3): 244-254.

26.   Gao X.F., Kan J., Zhang J.J. et al. Comparison of one-year clinical outcome between intravascular ultrasound-guided versus angiography-guided implantation of drug-eluting stents for left main lesions: a single-center analysis of a 1,016-patient cohort. Patient Prefer Adherence. 2014; 8: 1299-1309.

27.   Park S.-J., Kim Y-H., Park D.-W. et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Intervent. 2009; 2: 167-177.

28.   Ahn S.G., Yoon J., Sung J.K. et al. Intravascular ultrasound-guided percutaneous coronary intervention improves the clinical outcome in patients undergoing multiple overlapping drug-eluting stent implantation. Korean Circ Journal. 2013; 43: 231-238.

29.   Chen S.-L., Ye F., Zhang J.-J. et al. Intravascular ultrasound-guided systematic two-stent techniques for coronary bifurcation lesions and reduced late stent thrombosis. Cathet Cardiovasc Intervent. 2013; 81: 456-463.

30.   Kim S.H., Kim YH., Kang S.J. et al. Long-term outcomes of intravascular ultrasound-guided stenting in coronary bifurcation lesions. Am. J. Cardiol. 2010; 106 (5): 612-618.

31.   Klersy C., Ferlini M., Raisaro A. et al. Use of IVUS guided coronary stenting with drug eluting stent: a systematic review and meta-analysis of randomized controlled clinical trials and high quality observational studies. Int J Cardiol. 2013; 170 (1): 54-63.

32.   Zhang Y, Farooq V., Garcia-Garcia H.M. et al. Comparison of intravascular ultrasound versus angiography-guided drug-eluting stent implantation: a meta-analysis of one randomized trial and ten observational studies involving 19,619 patients. EuroIntervention. 2012; 8 (7): 855-865.

33.   Ahn J.M., Kang S.J., Yoon S.H. et al. Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies. Am. J. Cardiol. 2014; 113 (8): 1338-1347.

34.   Jang J.S., Song YJ., Kang W. et al. Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis. JACC: Cardiovasc Interv. 2014; 7 (3): 233-243.

35.   Hong S.-J., Kim B.-J., Shin D.-H. Effect of Intravascular Ultrasound-Guided vs Angiography-Guided Everolimus-Eluting Stent ImplantationThe IVUS-XPL Randomized Clinical Trial. JAMA. 2015; 314 (20): 2155-2163.

36.   Demin V.V., Galin P.Yu., Demin D.V. et al. Sravnenie strategij implantazii stentov s lekarstvennym pokrytiem pod kontrolem vnutrisosudistogo ultrazvukovogo skanirovaniya ili angiografii: randomizirovannoe issledovanie «Orenburg». Chast’ 1. Aktual’nost’, dizajn issledovaniya, neposredstvennye klinicheskie resul’taty [The comparison of intravascular ultrasound guided and angiography guided implantation of drug-eluting stents: The randomized trial «Orenburg». Part 1: Study design, direct clinical results]. Diagnostic & Interventional Radiology. 2015; 9 (3): 31-43 [In Russ].

 

 

 

 

Abstract:

Ischemic coronary artery cardiovascular disease is one of the main causes of the population's disability and mortality in Russian Federation and abroad. One of the most important treatment methods of ischemic coronary artery disease is myocardial revascularizationwith with usage of coronary stents. Nowadays there exist about 500 of coronary artery stent types, which differ in backing material, polymer technology, architecture, etc.

The overwhelming majority of stents used in Russian Federation are foreign-made stents, thus their cost is really high. According to plans of medicine developing as part of import substitution it is crucial to pay more attention to domestically produced stents, in particular to the first Russian drug-eluting stent «CALYPSO». Domestic stents cause minor complications and can be successfully used in emergency cases and various clinical settings for affections of different complexity.

 

References

1.     Bokerija L.A., Alekjan B.G. Rentgenjendovaskuljarnaja diagnostika i lechenie zabolevanij serdca i sosudov v Rossijskoj Federacii - 2014 god [Endovascular diagnosis and treatment of diseases of the heart and blood vessels in the Russian Federation]. M.: NCSSH im.A.N. Bakuleva; 2015 [In Russ].

2.     Matini M., Koledinsky A.G. And ect. Coronary stenting using XIENCE V DES: general problem, perspectives (a review). Mezhdunarodnyj zhurnal intervencionnoj kardiologii. 2011; 26: 25-33 [In Russ].

3.     Zhigalina L.A., Koledinskij A.G. i dr. Blizhajshie i sredneotdalennye kliniko-angiograficheskie rezul'taty koronarnogo jendoprotezirovanija arterij pri ispol'zovanii stentov s razlichnym lekarstvennym pokrytiem u pacientov v rannie sroki infarkta miokarda [Early and mid-term clinical and angiographic results of coronary arteries stenting using stents coated with different drugs in patients in the early stages of myocardial infarction.]. Mezhdunarodnyj zhurnal intervencionnoj kardiologii. 2013; 35: 43a [In Russ].

4.     Mardanjan G.V. Klinicheskaja jeffektivnost' i bezopasnost' chreskozhnyh koronarnyh vmeshatel'stv s ispol'zovaniem stentov s raznymi tipamilekarstvennogo pokrytija [Clinical efficacy and safety of percutaneous coronary intervention with stents with different types of drug-eluting]: Disc. kand. med. nauk. M., 2014; 12 [In Russ].

5.     Mazurova E.C., Koledinskij A.G. i dr. Sravnitel'naja ocenka jeffektivnosti stentov s razlichnym lekarstvennym antiproliferativnym pokrytiem v otdalennye sroki nabljudenija[Comparative evaluation of the effectiveness of stents with various antiproliferative drug-eluting in a long-term follow.]. Mezhdunarodnyj zhurnal intervencionnoj kardiologii. 2011; 24: 82-82 [In Russ].

6.     Gromov D.G., Koledinskij A.G. i dr. Stenty s biodegradirujushhim polimernym pokrytiem: obshhee sostojanie voprosa I perspektivy [Stents with biodegradable polymer coating: general state of the problem and prospects.]. Mezhdunarodnyj zhurnal intervencionnoj kardiologii. 2011; 25: 42-46 [In Russ].

7.    Zeynalov R., Koledinsky A.G. And ect. Results of coronary stenting using the stents with biodegradable polymer and antiproliferative (biolimus A9) coating. Mezhdunarodnyj zhurnal intervencionnoj kardiologii. 2011; 26: 16-21 [In Russ].

8.    Kudrjashov A.N., Lopotovskij PJu. Sravnitel'naja ocenka mehanicheskih svojstv koronarnogo stenta «Sinus» [ Comparative evaluation of mechanical properties of coronary stent «Sinus»]. Diagnosticheskaja intervencionnaja radiologija. 2014; 8(1): 70-77 [In Russ].

9.     Ioseliani D.G., Koledinskij A.G. i dr. Neposredstvennye i sredneotdalennye rezul'taty stentirovanija koronarnyh arterij golometallicheskimi stentami «Sinus» (opyt NPCIK) [Immediate and mid-term results of coronary artery stenting bare metal stents, «Sinus» (experience NPTSIK)]. Mezhdunarodnyj zhurnal intervencionnoj kardiologii. 2013; 35: 47b. [In Russ].

10.   Lopotovskij PJu., Parhomenko M.V., Kokov L.S. Predvaritel'nye rezul'taty Registra retrospektivnogo issledovanija praktiki primenenija rossijskih stentov «Sinus» i «Kalipso» [Preliminary results of a retrospective study of the Register practice of Russian stents «Sinus» and «Calypso»]. Vestnik Roszdravnadzora. 2015, 5:44-49 [In Russ].

 

 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы