Website is intended for physicians
Search:
Всего найдено: 4

 

Abstract:

Aim: was to identify features of disorders of brain perfusion and diffusion in venous stroke anc arterial stroke by CT and MRI.

Material and methods: in groups with acute venous stroke due dural sinustrombosis without primary hemorrhage (n=39) and atherothrombotic stroke (n=33) were performed perfusion CT (with relative MTT, CBV CBF) and MRI (with relative DWI and ADC), besides routine CT and CTA.

Results: rMTT in central areas were not different, but in venous stroke perifocal zone rMTT=1.27±0.2 vs. 1.68±0.6 in arterial stroke (p=0.00001); rCBF=0.76±0.5 vs. 0.36±0.2 focal and 1.28±0.25 vs. 0.69±0.26 perifocal (p=0.00001); rCBV=0.89±0.4 vs. 0.55±0.25 focal (p=0.0000001) and perifocal 1.28±0.25 vs. 1.07±0.42 (p=0,0006); rDWI = 1.69±0.34 vs. 2.11±0.47 focal (p=0.0001) and rDWI=1.1±0.4 vs. 2.14±0.32 perifocal (p=0.0039); rADC in central zone of venous lesions average 1.26±0.99 vs. 0.63±0.25 arterial stroke (p=0.0018); perifocal no different. A high correlation (r=0.95) was found when comparing the area affected (cm2) on CBV and DWI maps.

Conclusion: MR or CT perfusion and MR diffusion imaging in acute stroke make it possible to distinguish between primary arterial ischemic brain damage from congestive plethora due venous stroke. Perfusion-diffusion mismatch venous stroke has a different origin than in arterial stroke. If infarction is not formed benign hyperemia (not oligemia) - early vasogenic edema identified like basis of venous stroke. Venous ischemia is secondary and is associated with an externally constriction of microcirculation.

 

References

1.      Palena L.M., F.Toni, V.Piscitelli et al. CT Diagnosis of Cerebral Venous Thrombosis: Importance of the First Examination for Fast Treatment. The Neuroradiology J. 2009;22 :137-49.

2.      Hacke W., Hennerici M.G., Gelmers H.J., Kramer G. Cerebral ischemia. Springer Verlag BerlinHeidelberg. 1991; 238.

3.      Tarulli A. Neurology. A Clinician’s Approach. CambridgeUniversity Press. 2010; 240.

4.      Saposnik G., Barinagarrementeria F., Brown R.D. et al. Diagnosis and management of cerebral venous thrombosis: A statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011; 42: 1158-92.

5.      Kawaguchi T., Kawano T., Kaneko Y et al. Classification of venous ischemia with MRI. J. Clin. Neurosci. 2001; 8(Suppl. 1): 82-88.

6.      Nentwich L.M., Veloz W. Neuroimaging in acute stroke. Emerg Med Clin North Am. 2012; 30: 659-80.

7.      Luby M., Ku K.D., Latour L. Et al. Visual perfusion-diffusion mismatch is equivalent to quantitative mismatch. Stroke. 2011;42:1010-14.

8.      Semenov S.E., Kovalenko A.V., Khromov A.A. et al. Kriterii diagnostiki negemorragicheskogo venoznogo insul'ta metodami rentgenovskoj mul'tispiral'noj komp'yuternoj (MSKT) i magnitno-rezonansnoj tomografii (MRT). [Non-haemorrhagic venous stroke diagnosis criteria by multisliced computed tomography (MSCT) and magnetic resonsnce imaging (MRI).] Complex Issues of Cardiovascular Diseases. 2012;1:43-53 [In Russ.].

9.      Portnov YU.M., Semenov S.E., Kokov A.N. Perfuzionnaya komp'yuternaya tomografiya v ocenke sostoyaniya cerebral'noj gemodinamiki u pacientov s ishemicheskoj bolezn'yu serdca, perenesshih koronarnoe shuntirovanie v usloviyah iskusstvennogo krovoobrashcheniya. [Perfuison CT in assessment of cerebral hemodynamics in coronary artery disease patients undergoing on-pump CABG.] Sibirskii meditsinskii zhurnal. 2016;31(2):34-37 [In Russ.]

10.    Shatohina M.G. Magnitno-rezonansnaya i komp'yuternaya tomografiya v diagnostike negemorragicheskogo insul'ta, vyzvannogo cerebral'nym venoznym trombozom. [MRI and CT in diagnosis of non-hemorrhagic stroke, caused by venous thrombosis]Diss. kand. med. nauk. Tomsk. 2012; 193 [In Russ].

11.    Koenig M., Kraus M., Theek C. et al. Quantitative assessment of ischemic brain by means of perfusion related parameters derived from perfusion CT. Stroke. 2001; 322: 431-7.

12.    Nguyen T.B., Lum C., Eastwood J.D. et al. Hyperperfusion on perfusion computed tomography following revascularization for acute stroke. Acta Radiol. 2005; 46(6):610-15. doi: 10.1080/02841850510021607.

13.    Semenov S., MoldavskayaI., Shatokhina M. et al. How to distinguish between venous and arterial strokes and why? The Neuroradiology J. 2011; 24: 289-99.

14.    Oray D., Limon O., Ertan C. et al. Inter-observer agreement on diffusion-weighted magnetic resonance imaging interpretation for diagnosis of acute ischemic stroke among emergency physicians. Turk J Emerg Med. 2015; 15(2): 64-68. doi: 10.5505/1304.7361.2015.32659.

15.    Semenov S.E., Moldavskaya I.V., Semenov A.S., Barbarash L.S. Kriterii MR- i KT-differencial'noj diagnostiki venoznogo I arterial'nogo insul'ta. [The MR- and CT-Differential Diagnostic Criteria of Venous and Arterial Insult.] Meditsinskaya vizualizatsiya. 2010; 6: 41-9 [In Russ.].

16.    Mullins M.E., Grant P.E., Wang B. et al. Parenchymal abnormalities associated with cerebral venous sinus thrombosis: assessment with diffusion-weighted MR imaging. Am J Neuroradiol. 2004; 25: 1666-75.

17.    Semenov S.E., Moldavskaya I.V., Kovalenko A.V. et al. Ocenka rutinnyh topomorfometricheskih kriteriev mul'tispiral'noj komp'yuternoj tomografii i magnitno-rezoansnoj tomografii v diagnostike negemorragicheskogo insul'ta, vyzvannogo cerebral'nym venoznym trombozom. [Evaluation of routine topomorphometric criteria of multispiral computed tomography and magnetic resonance imaging in the diagnosis of non-hemorrhagic stroke, caused by cerebral venous thrombosis.] Clinical Physiology of Circulation. 2013; 3: 37-45 [In Russ.].

18.    Leach J.L., Fortuna R.B., Jones B.V., Gaskill-Shipley M.F. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006; 26(suppl 1): 19-41.

19.    Bousser M.G., Ferro J.M. Cerebral venous thrombosis: an update. Lancet Neurol. 2007; 6: 162-70.

20.    Semenov S., Portnov Yu., Semenov A. et al. Neuroimaging patterns of cerebral hyperperfusion. IOP Conf. Series: Journal of Physics: Conf. Series. 2017; 886: 012014 doi :10.1088/1742-6596/886/1/012014

21.    Gonzalez R.G., Hirsch J.A., Koroshetz W.J. et al. Acute Ischemic Stroke Imaging and Intervention. Springer. Verlag. Berlin. Heidelberg. 2006; 268.

22.    Semenov S.E., Moldavskaya I.V., Shatokhina M. G. et al. CT and MRI patterns of focal hyperemia in venous insult. Neuroradiology. 2012; 54 (Suppl. 1): 176.

23.    Powers W.J., Derdeyn C.P, Biller J. et al. 2015 American heart association/American stroke association focused update of the 2013. Guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment. A guideline for healthcare professionals from the American heart association/American stroke association. Stroke. 2015; 46: 3024-39. DOI: 10.1161/STR.0000000000000074.

24.    Luchevaya diagnostika i terapiya zabolevanij golovy i shei: nacional'noe rukovodstvo [Radiation diagnostics and therapy of head and neck diseases: the national leadership ] / gl. red. toma T. N. Trofimova. M.: GEOTAR-Media, 2013; 888 s. (Seriya «Nacional'nye rukovodstva po luchevoj diagnostike i terapii» / gl. red. serii S.K. Ternovoj) [In Russ].

25.    Bogdanov EH.I., Hasanov I.A. Differencial'naya diagnostika infarktov v bassejne zadnih mozgovyh arterij i sindroma zadnej obratimoj lejkoehncefalopatii. [Differential diagnosis of infarctions in the basin of the posterior cerebral arteries and the syndrome of posterior reversible leukoencephalopathy] Mat. Rossijsk. nauchn.-prakt. konf. «Narusheniya mozgovogo krovoobrashcheniya: diagnostika, profilaktika, lechenie». Irkutsk. 2011; 54-5 [In Russ.].

 

Abstract:

Aim. Was to study long-term results of drug eluting stents implantation: angiographic frequency of prolong stenosis, frequency of restenosis, endotelization dynamics, and other morphological indicators on the base of intravascular ultrasound (IV-US)

Materials and methods. The research consisted of 220 patients with angina pectoris or/and myocardial ischemic indexes: all of them were after drug eluting stents implantation. 174 patients on the first year and 82 on the second were underwent coronaroventriculography Double antiaggregant theraphy was given on the first year to 198(90%) patients, on the second - 21(9,5%)

Results. The whole angiographic success was 89,5%. 44% patients were underwent of lateral arterial branches defense. Unsuccessfu stenting was due to technical impossibility of movement threw variated coronar arteries segment in 5%; 1,8% was due to incomplete disclosing of stent; 2,7% - occlusion of lateral arterial branch

Conclusions. On the base of IV-US, at the end of the 1st year, 40% stents had full endotelization, at the end of the 2nd - 91%. Double antiaggregant theraphy was given to 99,1% patients on the first year. All coronary situations (morbidity, heart stroke, restenosis) was much more ess, than on the 2nd years, on which drug therapy was given only to 9,6% patients.

 

References 

1.    G. Ertaio et al. Late stent thrombosis, endothelialisation and drug-eluting stents. Neth. Heart. J. 2009l; 17 (4): 177-180.

2.    Ako J. et al. Late incomplete stent apposition after sirolimus-eluting stent implantation. A serial intravascular ultrasound analysis. J. Am. Coll. Cardiol. 2005; 46 (6): 1002-1005.

3.    Virmani R. et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent. Should we be cautious? Circulation. 2004; 109 (6): 701-705.

4.    Lee S.H., Chae J.K., Ko J.K. Consecutively developed late stent malappositions following the implantation of two different kinds of drug-eluting stents associated with spontaneous healing. Int. J. Cardiol. 2009; 134 (1): 7-10.

5.    Yamen E. et al. Late incomplete apposition and coronary artery aneurysm formation following paclitaxel-eluting stent deployment. Does size matter? J. Invasive. Cardiol. 2007; 19 (10): 449-450.

6.    Yasumi U. and Yasuto U. Angioscopic evaluation of neointimal coverage of coronary stents. Curr. Cardiovasc. Imaging. Rep. 2010; 3 (5): 317-323.

7.    Mayraj A. et al. Comparison of one year clinical outcomes with paclitaxel-eluting stents versus bare metal stents in everyday practice. Can. J. Cardiol. 2008; 24 (10): 771-775.

8.    Kim J.S. et al. Comparison of neointimal coverage of sirolimus-eluting stents and paclitaxel-eluting stents using optical coherence tomography at 9 months after implantation. Circ. J. 2010; 74: 320-326.

9.    Suwaidi J.A. et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000; 101: 948-954.

10.  Hofma S.H. et al. Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. Eur. Heart. J. 2006; 27: 166-170.

11.  Togni M. et al. Sirolimus-eluting stents associated with paradoxic coronary vasoconstriction. J. Am. Col. Cardiol. 2005; 46: 231-236.

12.  Shin D.I. et al. Drugeluting stent implantation could be associated with long-term coronary endothelial dysfunction. Comparison between sirolimus-eluting stent and paclitaxel-eluting stent. Int. Heart. J. 2007; 48: 553-567.

13.  Takano M. et al. Angioscopic differences in neointimal coverage and in persistence of thrombus between sirolimus-eluting stents and bare-metal stents after 6-month implantation.     Eur.     Heart.    J.     2006; 27: 2189-2195.

14.  Moore P. et al. A randomized optical coherence tomography study of coronary stent strut coverage and luminal protrusion with rapamycin-eluting stents. JACC Cardiovasc. Interv. 2009.

15.  Oyabu J. et al.   Angioscopic evaluation of neointimal coverage. Sirolimus drug-eluting stent      versus bare metal stent. Am. Heart. J. 2006; 52: 1168-1174.

16.  Kotani J. et al. Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings. J. Am. Col. Cardiol. 2006; 47: 2108.

17.  Wilson G.J. et al. Comparison of inflammatory response after implantation of sirolimus- and paclitaxel-eluting stents in porcine coronary arteries. Circulation. 2009; 120: 141-149.

18.  Higo T. et al. Atherosclerotic and thrombogenic neointima formed over SES. JACC Cardiovasc. Imaging. 2009; 2: 616-624

19.  Latchumanadhas K. et al. Early coronary aneurysm with paclitaxel-eluting stent. Indian. Heart. J. 2006; 58 (1): 57-60.

20.  Levisay J.P., Roth R.M., Schatz R.A. Coronary artery aneurysm formation after drug-eluting stent implantation. Cardiovasc. Revasc. Med. 2008; 9 (4): 284-287.

21.  Chen D. et al. Spontaneous resolution of coronary artery pseudoaneurysm consequent to percutaneous intervention with paclitaxel-eluting  stent.   Tex.  Heart.   Inst. J.   2008; 35 (2): 189-192.

22.  Lee S.E. et al. Very late stent thrombosis associated with multiple stent fractures and peri-stent aneurysm formation after sirolimus-eluting stent implantation. Circ. J. 2008; 72 (7): 1201-1204.

23.  Kim J.S. et al. Delayed stent fracture after successful sirolimus-eluting stent (Cypher®)  implantation.  Korea

 

Abstract:

Purpose. Was to investigate the role of diffusion weighted imaging (DWI) in focal hepatic lesions diagnostic.

Material and methods. Data of 70 patients (20 men) aged 28-78 years with focal hepatic lesions were analyzed. All of them underwent 1,5 T MRI; DWI obtained at b values of 50 s/mm2, 400 s/mm2, and 800 s/mm2. The results of MSCT data, intra-operative visual and ultrasound examination, histology of operation probes, and follow-up data were confermed.

Results. In 70 patients 203 focal lesions sized 3-168 mm: cysts (55), angiomas(36), metastases (89), nodal hyperplasia(5), primary tumors (5), abscesses (5), focal necroses (2) were revealed. DWI is capable of making differential diagnosis of focal hepatic lesions: cysts were not visualized at b = 800 s/mm2, and their ADC was (2,5 ± 0,2) × 10~3 s/mm2. Metastases were visible in all b-values, and had ADC lower than that for cysts (1,2 ± 0,5) × 10~3 s/mm2). Angiomas also were good visualized in all b-values, but ADC of angiomas was higher and varied from 1,5x 10~3 to 2,6 x 10~3 s/mm2. DWI is advantageous in detecting of small (less than 1 cm) foci: even if this kind of lesions was indistinct atT1 and T2 weighed images, DWI showed high intensity and well-defined edges.

Conclusions. Diffusion weighed MRI appeared to play additional role in differential diagnosis of focal hepatic lesions, enhancing detectabi-lity of the small (less than 1 cm) foci. The technique is simple, cost-effective and not time-consuming. 

 

     References 

1.     Патютко Ю.И. Хирургическое лечение злокачественных опухолей печени. М.: Практическая медицина. 2005; 11-27, 160-167, 216-291.

2.     Holzapfel К. et al. Detection and Characterization of Focal Liver Lesions using Respiratory-Triggered Diffusion-Weighted MR Imaging (DWI). MAGNETOM Flash. The Magazine of MR Issue. RSNA Edition. 2008; 2: 6-9.

3.     Ринкк П.А. Магнитный резонанс в медицине. М. «Гэотар-Мед». 2003; 138.

4.     Bruegel M. et al. Diagnosis of Hepatic Metastasis. Comparison of Respiration-Triggered Diffusion-Weghted Echo-Planar MRI and Five T2-Weighted Turbo Spin-Echo Sequences. Am. J. Roentgenol. 2008; 191: 1421-1429.

5.     Coenegrachts K. et al. Improved focal liver les ion detection: comparison of singleshot diffusion-weighted echoplanar and single-shot T2 weighted turbo spin echo techniques. Brit. J. ofRadiol. 2007; 80, 524-531.

6.     Qayyum A. Diffusion-weighted Imaging in the Abdomen and Pelvis. Concepts and Applications. RadioGraphics. 2009; 29: 1797-1810.

7.     Kandpal H. Respiratory-Triggered Versus Breath-Hold Diffusion-Weighted MRI of Liver Lesions. Comparison of Image Quality and Apparent Diffusion Coefficient Values. Am. J. Roentgenol. 2009; 192: 915-922.

8.     Koh D.M., Collins D.J. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am. J. Roentgenol. 2007; 188: 1622-1635.

 

authors: 

 

Abstract:

Good response to neoadjuvant chemotherapy is a favorable prognostic factor in patients with breast cancer. Early response evaluation might spare unnecessary chemotherapy in bad responders. Clinically mammography and ultrasound are used to evaluate response to treatment while being bac predictors of early response. MRI is getting wider acceptance but still lacks necessary accuracy to the absence of functional evaluation. Thus novel methods are being evaluated in early response prediction. Diffusion-weighted MRI, MR-spectroscopy, mammoscintigraphy PET as well as diffusion optic tomography are discussed in the review as potential ways to improve early prediction of response in breast cancer patients undergoing neoadjuvant chemotherapy.

 

References

1.     Davydov M.I., Aksel' E.M. Statistika zlokachestvennyh novoobrazovanij v Rossii i stranah SNG v 2012 g [Statistics of malignancies in Russian Federation and the CIS countries in 2012.]. Moskva, 2014;63-64 [In Russ].

2.     Montagna E., Bagnardi V., Rotmensz N. Pathological complete response after preoperative systemic therapy and outcome: relevance of clinical and biologic baseline features. Breast Cancer Res Treat. 2010;124(3):689-99.

3.     Bonnefoi H., Litiere S., Piccart M. Pathological complete response after neoadjuvant chemotherapy is an independent predictive factor irrespective of simplified breast cancer intrinsic subtypes: a landmark and two-step approach analyses from the EORTC 10994/BIG 1-00 phase III trial. Ann Oncol. 2014 Jun;25(6):1128-36.

4.     Semiglazov V.F., Paltuev R.M., Semiglazova TJu. i dr. Klinicheskie rekomendacii po diagnostike i lecheniju raka molochnoj zhelezy [Clinical guidelines for the diagnosis and treatment of breast cancer.]. SPb.: ABS-press. 2013; 234 [In Russ].

5.     Schmitt E.L., Threatt B.A. Effective breast cancer detection with filmscreen mammography. Canad. Ass. Radiol. 1985;36(4):303-307.

6.     Mistry K.A., Thakur M.H., Kembhavi S.A. The effect of chemotherapy on the mammographic appearance of breast cancer and correlation with histopathology. Brit. J. Radiol. 2016; 89:1057-1063.

7.     Helvie M.A., Joynt L.K., Cody R.L. et al. Locally advanced breast carcinoma: accuracy of mammography versus clinical examination in the prediction of residual disease after chemotherapy. Radiology. 1996;198:327-332.

8.    Komjahov A.V.. Ocenka jeffektivnosti neoad’juvantnoj sistemnoj terapii raka molochnoj zhelezy s pomoshhju magnitno-rezonansnoj tomografii i sonografii [Evaluation of the effectiveness of neoadjuvant systemic therapy for breast cancer using magnetic resonance imaging and sonography.]. Avtoreferat. Diss. kand. med. nauk SPb. 2016; 13-15 [In Russ].

9.    Gazhonova V.E., Efremova M.P., Dorohova E.A. Sovremennye metody neinvazivnoj luchevoj diagnostiki raka molochnoj zhelezy [Modern non-invasive methods of radiation diagnosis of breast cancer.]. RMZh. 2016;5:321-324 [In Russ].

10.  Meladze N.V., Ternovoj S.K., Abduraimov A.B. MR-spektroskopija v differencial'noj diagnostike uzlovyh obrazovanij molochnyh zhelez[MR spectroscopy in the differential diagnosis of nodular breast cancer.]. Bjulleten’ sibirskoj mediciny. 2012;5:78-79 [ In Russ].

11.   Semiglazov V.F., Semiglazov V.V., Krivorot'ko P.V. i dr. Rukovodstvo po lecheniju rannego raka molochnoj zhelezy [Guidelines for early breast cancer therapy.]. SPb. 2016; 12-13 [In Russ].

12.   Marinovich M.L., Macaskill P., Irwig L. et al. Metaanalysis of agreement between MRI and pathologic breast tumour size after neoadjuvant chemotherapy. Br. J. Cancer. 2013;109:1528-1536.

13.   Meladze N.V. Rol' Mr-spektroskopii v kompleksnoj diagnostiki raka molochnoj zhelezy [MR spectroscopy in the complex diagnosis of breast cancer]. Avtoreferat. Diss. kand. med. nauk. M. 2014;78-79 [In Russ].

14.   Danishad K.K., Sharma U., Sah R.G., et al. Assessment of therapeutic response of locally advanced breast cancer (LABC) patients undergoing neoadjuvant chemotherapy (NACT) monitored using sequential magnetic resonance spectroscopic imaging. NMR Biomed. 2010;23(3):233-41.

15.   Jonathan K.P, Begley L., Thomas W. In vivo proton magnetic resonance spectroscopy of breast cancer: a review of the literature. Breast Cancer Research. 2012; 14:207.

16.   Bammer R. Basic principles of diffusion-weighted imaging. Eur Radiol. 2003;45:169-184.

17.   Kwee T., Takahara T., Ochiai R. et al. Whole-body diffusion weighted magnetic resonance imaging. Eur Radiol. 2009;70: 409-417.

18.   Smirnova N.A., Nazarov A.A., Del'gadil'o-Kuznecov L.Je. Radionuklidnye metody v diagnostike i lechenii raka molochnoj zhelezy [Radionuclide methods in the diagnosis and treatment of breast cancer.]. Vestnik RUDN. 2005;(29)1: 45-50 [In Russ].

19.  Brjanceva Zh.V. Avtoreferat. Diss. kand. med. nauk. Rolmammoscintigrafii v ocenke jeffektivnosti neoadjuvantnogo lechenija raka molochnoj zhelezy [Mammoscintigraphy role in assessing the effectiveness of neoadjuvant treatment of breast cancer.]. SPb. 2015;3-4 [In Russ].

20.   Qiufang Liu, Chen Wang, Panli Li. The Role of 18F- FDG PET/CT and MRI in Assessing Pathological Complete Response to Neoadjuvant Chemotherapy in Patients with Breast Cancer: A Systematic Review and Meta-Analysis. Biomed Res Int. 2016;2016:10.

21.   Tromberg B.J., Zhang Z., Leproux A. Predicting Responses to Neoadjuvant Chemotherapy in Breast Cancer: ACRIN 6691 Trial of Diffuse Optical Spectroscopic Imaging. Сancer Research. 2016;5933.

22.   Baek H.M., Chen J.H, Nie K. Predicting Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer by Using MR Imaging and Quantitative 1H MR Spectroscopy. Radiology. 2009 Jun; 251(3):653-662.

23.   Bufi E., Belli P, Matteo M. Hypervascularity Predicts Complete Pathologic Response to Chemotherapy and Late Outcomes in Breast Cancer. Clinical Breast Cancer. 2016; Jun 23. pii: S1526-8209(16)30162-8.

24.   Hylton N.M., Constantine A., Gatsonis M. Neoadjuvant Chemotherapy for Breast Cancer: Functional Tumor Volume by MR Imaging Predicts Recurrence-free Survival-Results from the ACRIN 6657/CALGB 150007 I-SPY 1 TRIAL. Radiology. 2016; Apr; 279(1):44-55.

25.   Schaefgen B., Mati M., Sinn H. Can Routine Imaging After Neoadjuvant Chemotherapy in Breast Cancer Predict Pathologic Complete Response? Annals of Surgical Oncology. 2016;23(3):789-795.

26.   Cho N., Im S.A., Kang K.W. Early prediction of response to neoadjuvant chemotherapy in breast cancer patients: comparison of single-voxel (1)H-magnetic resonance spectroscopy and (18)F-fluorodeoxyglucose positron emission tomography. Eur Radiol. 2016; 26(7):2279-90.

27.   Bufi E., Belli P., Costantini M. Role of the Apparent Diffusion Coefficient in the Prediction of Response to Neoadjuvant Chemotherapy in Patients With Locally Advanced Breast Cancer. Clin Breast Cancer. 2015 0ct;15(5):370-80.

28.   Leong K.M., Lau P., Ramadan S. Utilisation of MR spectroscopy and diffusion weighted imaging in predicting and monitoring of breast cancer response to chemotherapy. J Med Imaging Radiat Oncol. 2015 Jun;59(3):268-77.

29.   Novikov S.N., Kanaev S.V., Petr K.V. Technetium-99m methoxyisobutylisonitrile scintimammography for monitoring and early prediction of breast cancer response to neoadjuvant chemotherapy. Nucl Med Commun. 2015 Aug; 36(8):795-801.

30.   Trehan R., Seam R.K., Gupta M.K. Role of scintimammography in assessing the response of neoadjuvant chemotherapy in locally advanced breast cancer. World J Nucl Med. 2014 Sep;13(3):163-9.

31.   Schaafsma B.E., van de Giessen M., Charehbili A. Optical mammography using diffuse optical spectroscopy for monitoring tumor response to neoadjuvant chemotherapy in women with locally advanced breast cancer. Clin Cancer Res. 2015 Feb; 21(3):5

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы