Website is intended for physicians
Search:

 

Abstract:

Aim: was to establish methods of coronary artery bypass graft (CABG) with use of internal thoracic artery (ITA), that influenced high risk of continued diaphragmatic dysfunction in early post-operative period, on the base of analysis of dynamics of diaphragmatic dysfunction after operation.

Materials and methods: the retrospective study included 880 patients in the early period after CABG with use of ITA. The mobility of diaphragm domes was estimated on 2,8±0,88 day after the surgery, when transferred from the intensive care unit to the in-patient department and again on 7,7±1,9 day when transferred to the rehabilitation department. Patients were divided into 3 groups. The first group with normal diaphragm mobility with an initial study of 529(60,1%) patients. The second group with diaphragmatic dysfunction in the initial study and the restored mobility of the diaphragm in a re-examination of 249(28,3%) patients. The third group with diaphragmatic dysfunction, which persists in the re-examination of 102(11,6%) patients. The criterion for diaphragmatic dysfunction was the amplitude of the diaphragm's movement ess than 10 mm. Using the model of logistic regression, the influence of the CABG methods on the probability of maintaining diaphragmatic dysfunction at the end of the early postoperative period was determined. Two CABG methods were included in the model: «in situ» and autograft.

Results: in the primary study, 39,9% of patients had diaphragmatic dysfunction, 21,1% left-sided, 8,0% right-sided, and 10,8% bilateral. The prevalence of diaphragmatic dysfunction during the early postoperative period decreases threefold, from 39,9% to 11,5%, and was persisted more often as a unilateral lesion: left-sided in 7,2% of patients or right-sided in 3,4%, Less often, bilateral dysfunction persists in 0,9% of patients. Restoration of the function of the diaphragm during repeated examination was observed in 71,2% of cases of initial dysfunction. A different effect was established on the persistence of unilateral and bilateral diaphragmatic dysfunction by the end of the early postoperative period, depending on methods of CABG with use of ITA and their combination. High likelihood conservation diaphragmatic dysfunction by the right harvest of ITA was observed after bypass «in situ» (OR 4.4; CI 2,2-8,9) and by the harvest of ITA left after bypass graft (OR 4.1; CI 1,6-10,6). Other methods of grafting either did not have an effect on the preservation of dysfunction on the part of the ITA harvest, or the effect was traced, but was statistically insignificant.

Conclusion: dysfunction of the diaphragm acquired after CABG with use of ITA is reversible. During the early postoperative period, 71,2% of patients undergo full restoration of diaphragm mobility, the prevalence of diaphragmatic dysfunction decreases three-fold, the frequency of bilateral diaphragm dysfunction decreases by 10 times. Methods of CABG with use of ITA, «insitu» and autograft, affect the likelihood of the dysfunction of the diaphragm retained during the early postoperative period by surgical manipulation. Results of the study indicate that chances of maintaining diaphragmatic dysfunction were 4,4 times higher by grafting the right ITA «in .situ» and 4,1 times by grafting the left ITA with a graft. While the likelihood of maintaining diaphragmatic dysfunction was low by grafting the right ITA with a graft and was absent from the grafting of the left ITA «in situ».

 

References

1.      Paramonova T.I., Vdovkin A.V., Pal'kova V.A. Factors, influencing the development of diaphragmatic dysfunction in the early postoperative period after cardiac surgery. Diagnosticheskaya I interventsionnaya radiologia. 2016; 10(2):11-16.

2.      Canbaz S, Turgut N, Halici U, et al. Electrophysiological evaluation of phrenic nerve in-jury during cardiac surgery - a prospective, controlled, clinical study. BMC Surgery. 2004, 4:2

3.      Deng Y Byth K, Paterson HS. Phrenic nerve injury associated with high free right internal mammary artery harvesting. Ann Thorac Surg. 2003; 76(2):459-463

4.      Bazylev V.V., Paramonova T.I., Vdovkin A.V., i soavt. Ocenka faktorov, vliyayushchih na razvitie dispnoeh v rannem posleoperacionnom periode posle kardiohirurgicheskih vmeshatel'stv. [Factors affecting the development of dyspnea in the early postoperative period after cardiac surgery] Diagnosticheskaya i intervencionnaya radiologiya. 2016; 10(4):19-27.

5.      Bonacchi M, Prifti E, Giunti G, et al. Respiratory dysfunction after coronary artery bypass grafting employing bilateral internal mammary arteries: the influence of intact pleura. Eur J Cardiothorac Surg. 2001; 19:827-833.

6.      Matsumoto M., Konishi Y, Miwa S., et al. Effect of different methods of internal thoracic artery harvest on pulmonary function. Ann Thorac Surg. 1997; 63: 653-655.

7.      Uzun K, Kara H, Ugurlu D. The Effects Of Internal Mammary Artery Harvesting Techniques On Pulmonary Functions. Ko§uyolu Kalp Dergisi. 2011; 14(3):76-78.

8.      Diehl JL, Lofaso F, Deleuze P, et al. Clinically relevant diaphragmatic dysfunction after cardiac operations. J Thorac Cardiovasc Surg. 1994; 107:487-498

9.      Bazylev V.V., Paramonova T.I., Vdovkin A.V. Analiz polozheniya i podvizhnosti diafragmy u vzroslyh s normal'noj funkciej legkih do i posle kardiohirurgicheskih operacij. [Analysis of position and mobility of the diaphragm in adults with normal lung function before and after cardiac surgery.] Luchevaya diagnostika i terapiya. 2017;(1):53-63.

10.    Davison A., Mulvey D. Idiopathic diaphragmatic weakness. BMJ 1992; 304:492-494

11.    McCool F.D., McCool G.E. Dysfunction of the Diaphragm. N Engl J Med. 2012; 366:932-942

12.    Kim WY Suh HJ, Hong SB, et al. Diaphragm dysfunction assessed by ultrasonography: Influence on weaning from mechanical ventilation. Critical Care Medicine. 2011; 12:2627-2630.

13.    Bazylev V.V., Nemchenko E.V., Karnahin V.A., i soavt. Floumetricheskaya ocenka koronarnyh shuntov v usloviyah iskusstvennogo krovoobrashcheniya i na rabotayushchem serdce. [Flowmetric estimation of coronary grafts in conditions of extracorporeal circulation and on a working heart.] Angiologiya i sosudistaya hirurgiya. 2016; 22(1):67-72.

14.    Rankin JS, Tuttle RH, Wechsler AS. et al. Techniques and benefit of multiple internal mammary artery bypass at 20 year of follow up. Ann Thorac Surg. 2007; 83:1008-1015.

15.    Buxton BF, Tatoulis J, Fuller JA. The right internal thoracic artery: the forgotten conduit - 5,766 patients and 991 angiograms. The Annals of Cardiothoracic Surgery. 2011; 92: 9-17.

16.    Lytle BW, Blackstone EH, Sabik JF. et al. The effect of bilateral internal thoracic artery grafting on survival during 20 postoperative years. Ann Thorac Surg 2004;78(6):2005-2014.

17.    Tripp HF., Sees DW, Lisagor P.G, et al. Is phrenic nerve dysfunction after cardiac surgery related to internal mammary harvesting? J Card Surg. 2001, 16(3):228-231

18.    Calafiore AM, Di Giammarco G., Teodori G, et al. Bilateral internal thoracic artery grafting with and without cardiopulmonary bypass: six-year clinical outcome. J Thorac Cardiovasc Surg. 2005; 130(2):340—345.

19.    Cygel'nikov S.A. Vnutrennyaya grudnaya arteriya v hirurgicheskom lechenii ishemicheskoj bolezni serdca: varianty i taktika ispol'zovaniya, rezul'taty. [Internal thoracic artery in the surgical treatment of ischemic heart disease: options and tactics of use, results.] Avtoreferat Dis. dok. med. nauk. M., 2010; 49.

20.    Buxton BF, Ruengskulrach P, Fuller J, et al. The right internal thoracic artery graft - benefits of grafting the left coronary system and native vessels with a high-grade stenosis. The European Journal of Cardio-Thoracic Surgery. 2000; 18:255-261.

21.    Bazylev V.V., Nemchenko E.V., Pavlov A.A., i soavt. Sravnitel'nye rezul'taty revaskulyarizacii bassejna pravoj koronarnoj arterii s ispol'zovaniem bimammarnogo Y- grafta i autoveny. [Comparative results of revascularization of right coronary artery basin using bimammary Y-graft and autovein.] Grudnaya i serdechno-sosudistaya hirurgiya. 2014; 5:11-18.

22.    Vecherskij YU.YU., Andreev S.L., Zatolokin V.V. Taktika ispol'zovaniya pravoj vnutrennej grudnoj arterii «in situ» pri koronarnom shuntirovanii. [Tactics of using the right internal thoracic artery «in situ» in CABG surgery.] Angiologiya isosudistaya hirurgiya. 2015; 1(21):148-154.

23.    O'Brien JW, Johnson SH, VanSteyn SJ, et al. Effects of internal mammary artery dissection on phrenic nerve perfusion and function. Ann Thorac Surg. 1991; 52: 182-188.

24.    Sharma AD, Parmley CL, Sreeram G, et al. Peripheral nerve injuries during cardiac surgery: risk factors, diagnosis, prognosis, and prevention. Anesth Analg. 2000; 91(6):1358

25.    Wilcox PG, Pardy RL. Diaphragmatic weakness and paralysis. Lung. 1989; 167:323-341

26.    Buxton BF, Hayward PA. The art of arterial revascularization - total arterial revascularization in patients with triple vessel coronary artery disease. The Annals of Cardiothoracic Surgery. 2013; 2: 543-551.

27.    Paterson HS, Naidoo R., Byth K, et al. Full myocardial revascularization with bilateral internal mammary artery Y grafts. The Annals of Cardiothoracic Surgery. 2013; 2: 444-452.

28.    Akchurin R. S., Shiryaev A. A., Brand YA. B., i soavt. Hirurgiya koronarnyh arterij - krajnosti i algoritmy revaskulyarizacii. [Surgery of coronary arteries - extremes and algorithms of revascularization.] Grudnaya i serdechno-sosudistaya hirurgiya. 2001; 2:13-17

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы