Website is intended for physicians
Search:

 

Abstract:

Introduction: development of software and hardware capabilities of modern computing systems has enabled three-dimensional (3D) modeling and 3D printing technology (medical prototyping) to become available for a wide range of healthcare specialists. Commercial software used for this purpose remains unavailable to private physicians and small institutions due to the high cost. However, there are freeware applications and affordable 3D printers that can also be used to create medical prototypes.

Aim: was to describe stages of creating of physical 3D models based on medical imaging data and to highlight main features of specialized software and to make an overview of main types of 3D printing used in medicine.

Material and methods: article describes process of creation of medical prototype, that can be divided on three main stages: 1) acquisition of medical imaging, obtained by ‘volumetric’ scanning methods (computed tomography (CT), magnetic-resonance imaging (MRI), 3D ultrasound (3D US)); 2) virtual 3D model making (on the basis of visualisation data) by segmentation, polygonal mesh extraction and correction; 3) 3D printing of virtual model by the chosen method of additive manufacturing, with or without post-processing.

Conclusion: medical prototypes with sufficient precision and physical properties are necessary for understanding of anatomical structure and surgical crew training and can be made with use of freely available software and inexpensive 3D printers.

 

References

1.     Luo H, Meyer-Szary О, Wang Z, Sabiniewicz R, Liu Y. Three-dimensional printing in cardiology: current applications and future challenges. Cardiol. J. 2017; 24 (4): 436–444.

2.     Vukicevic M, Mosadegh B, Min J K, Little S H. Cardiac 3D printing and its future directions. JACC Cardiovasc. Imaging. 2017; 10 (2): 171–184.

3.     Meier LM, Meineri ·M, Hiansen JQ, Horlick EM. Structural and congenital heart disease interventions: the role of three-dimensional printing. Neth Heart J. 2017; 25 (2): 65–75.

4.     Witschey WR, Pouch AM, McGarvey JR, Ikeuchi K, Contijoch F, Levack MM, Yushkevick PA, Sehgal CM, Jackson BM, Gorman RC, Gorman JH. Three-dimensional ultrasound-derived physical mitral valve modeling. Ann. Thorac. Surg. 2014; 98 (2): 691–694.

5.     Vukicevic M, Puperi DS, Grande-Allen KJ, Little SH. 3D Printed Modeling of the Mitral Valve for Catheter-Based Structural Interventions. Ann. Biomed. Eng. 2017; 45 (2): 508–519.

6.     Parimi M, Buelter J, Thanugundla V, Condoor S, Parkar N, Danon S, King W. Feasibility and Validity of Printing 3D Heart Models from Rotational Angiography. Pediatr. Cardiol. 2018; 39 (4): 653–658.

7.     Abudayyeh I, Gordon B, Ansari MM, Jutzy K, Stoletniy L, Hilliard A. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples. J. Interv. Cardiol. 2018; 31 (3): 375–383.

8.     Ripley B, Levin D, Kelil T, Hermsen JL, Kim S, Maki JH, Wilson GJ. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses. J.of Magnetic Resonance Imaging. 2016; 45 (3): 1–11.

9.     Wang J, Coles-Black J, Matalanis G, Chuen J. Innovations in cardiac surgery: techniques and applications of 3D printing. J. 3D Print. Med. 2018; 2 (4): 179–186.

10.   Nagibovich OA, Svistov DV, Peleshok SA, Korovin AE, Gorodkov EV. Appliance of 3D printing technology in medicine. Klin. patofiz. 2017; 23 (3): 14–22 [In Russ].

11.   Bagaturiya GO. Prospects for the use of 3D printing in planning of surgical operations. Med.: teorija i praktika. 2016; 1 (1): 26–35 [In Russ].

12.   Kim GB, Lee S, Kim H, Yang DH, Kim Y-H, Kyung YS, Kim C-S, Choi SH, Kim BJ, Ha H, Kwon SU, Kim N. Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology. Korean J. of Radiol. 2016; 17): 182.

13.   Shi D, Liu K, Zhang X, Liao H, Chen X. Applications of three-dimensional printing technology in the cardiovascular field. Inter. and Emergency Med. 2015; 10: 769–780.

14.   Byrne N, Forte MV, Tandon A, Tandon A, Valverde I, Hussain T. A systematic review of image segmentation methodology, used in the additive manufacture of patient specific 3D printed models of the cardiovascular system. JRSM Cardiovasc. Disease. 2016; 5 (0): 1–9.

15.   Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions. Revista Espaсola de Cardiologнa (English Edition). 2017; 70 (4): 282–291.

16.   Karyakin NN, Shubnyakov II, Denisov AO, Kachko A V, Alyev RV, Gorbatov RO. Regulatory concerns about medical device manufacturing using 3D printing: current state of the issue. Travmatol. i ortop. Ross. 2018; 24 (4): 129–136 [In Russ].

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы