Abstract: Comparative analysis of transradial and transfemoral approach for uterine artery embolization is presented. Materials and methods: for the period from september 2013 to december 2014, 58 women underwent uterine artery embolization (UAE). Age varied from 25 to 49. Transradial approach (TRA) was used in 26 patients (44,8%), transfemoral approach (TFA) - in 32 patients (55,2%). Results: uterine artery embolization was successful in all patients in both groups. Operation duration was 20,7 minutes in TRA group and 26,3 in TFA group (p>0,05). Mean number of used catheters was lower in TRA group (1,2 and 2,3 respectively p>0,02). In early post-operative period there was no complication in access place in TRA group, in 2 cases (7,7%) small subcutaneous hematomas were noted. They didn't require any special treatment. In TFA group, in 1 case (3.1%) it was noted the presence of hematoma, 5 cm in diameter, and in 4 cases (12,5%) - there were small subcutaneous hematomas that didn't require any special treatment. The usage of TRA is associated with a statistically significant reduction in the incidence of all parameters of discomfort, associated with UAE and improving the quality of life of patients in the early post-operative period compared with TFA. Significantly more often in patients with TRA group compared to the group TFA completely absent from the discomfort associated with the procedure (61.5% and 6.25%, respectively, p <0,001). Conclusions: the use of TRA allowed to decrease an average of 29.6% of total duration of the intervention, decrease up to 51.5% of time spent on the uterine artery catheterization and 40.8% patient radiation dose. In addition, TRA allowed early mobilization of patients and reduced by 59% the incidence of discomfort associated with the UAE. References 1. Adamjan L.V., Tkachenko Je.R. Sovremennye aspekty lechenija miomy matki. [Modern aspects of treatment of uterine fibroid]. Med. Kafedra. 2003; 4 (8): 110-118 [In Russ]. 2. Kjerulff K.H., Langenberg P.W., Rhodes J.C. et al. Effectiveness of hysterectomy. Obstet. Gynecol. 2000; 95:319-326. 3. Kiseljov S.I. Sovremennye podhody k hirurgicheskomu lecheniju bol’nyh miomoj matki. Aftoreferat. Diss. dokt. med. nauk [Modern approaches to surgical treatment of patients with uterine fibroid. Dr. med. sci. diss.]. Moscow/ 2003: 46 [In Russ]. 4. Hutchins F.L., Worthington-Kirsch R., Berkowits R.P. Selective uterine artery embolization as primary treatment for symptomatic leiomyomata uteri. J. Am. Assoc. Gynecol. Laparosc. 1999; 6: 279-284. 5. Strizhakov A.N., Davydov A.I., Pashkov V.M., Lebedev V.A. Dobrokachestvennye zabolevanija matki [Benign disease of uterus]. Moscow 2011: 281 [In Russ]. 6. Oliver J.A.Jr., Lance J. Selective embolization to control massive hemorrhage following pelvic surgery. Am. J. Obstet. Gynecol. 1979; 135: 431-432. 7. Ravina J.H., Herbreteau D., Ciraru-Vigneron N. et al. Arterial embolisation to treat uterine myomata. Lancet. 1995; 346(8976): 671-672. 8. Worthington-Kirsch R.L., Andrews R.T., Siskin G.P. et al. Uterine fibroid embolization: technical aspects. Tech. Vasc. Interv. Radiol. 2002; 5: 17-34. 9. Tavris D.R., Gallauresi B.A., Lin B. et al. Risk of local adverse events following cardiac catheterisation by hemostasis device use and gender. J. Invasive Cardiol. 2004; 16(9): 459-464. 10. Mclvor J., Rhymer J.C. 245 transaxillary arteriograms in arteriopathic patients: success rate and complications. Gin. Radiol. 1992; 45: 390-394. 11. Jolly S.S., Yusuf S., Cairns J. et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011; 377(9775): 1409-1420. 12. Kanei Y, Kwan T., NakraN.C. et al. Transradial cardiac catheterization: A review of access site complications. Catheter Cardiovasc. Interv. 2011; 78(6): 840-846. 13. Caputo R.P., Tremmel J.A., Rao S. et al. Transradial arterial access for coronary and peripheral procedures: Executive summary by the transradial committee of the SCAI. Catheter Cardiovasc. Interv. 2011; 78(6): 823-839. Sherev D.A., Shaw R.E., Brent B.N. Angiographic predictors of femoral access site complications: implication for planned percutaneous coronary intervention. Catheter Cardiovasc. Interv. 2005; 65(2): 196-202.
Abstract: The article is devoted to one of the most modern methods of treatment of benign prostatic hyperplasia (BPH) - endovascular prostatic artery embolization (PAE). This kind of intervention is performed, usually, with approach through the common femoral artery Transradial vascular approach has many advantages over the femoral approach, but its use in this type of intervention is currently limited. Aim: was to conduct a comparative analysis of the use of transradial and transfemoral vascular approach when performing PAE. Materials and methods: in a group of transradial approach included 24 patients, and in the femoral approach group - 23 patients Results: success rate of the procedure and the frequency of complications of vascular approach were comparable between groups. The total duration of the procedure, the time spent on catheterization of internal iliac and prostatic arteries, radiation exposure dose were significantly lower in the group of transradial approach. Using the transradial approach is associated with a significant reduction in the incidence and severity of the discomfort associated with the procedure. References 1. Lee C., Kozlowski J.M., Grayhack J.T. Intrinsic and extrinsic factors controlling benigh prostatic growth. Prostate. 1997; 31(2):131-138. 2. American Urological Association: Guideline on the Management of Benigh Prostatic Hyperplasia (BPH). Revised 2010. 3. Appleton D.S., Sibley G.N., Doyle P.T. Internal iliac artery embolisation for the control of severe bladder and prostate haemorrhage. Br. J. Urol. 1988;61(1):45-47. 4. Michel F., Dubruille T., Cercueil J.P. et al. Arterial embolization for massive hematuria following transurethral prostatectomy. J. Urol. 2002; 168(6):2550-2551. 5. Rastinehad A.R., Caplin D.M., Ost M.C. et al. Selective arterial prostatic embolization (SAPE) for refractory hematuria of prostatic origin. Urology. 2008;71(2):181- 184. 6. DeMeritt J.S., Elmasri F.F., Esposito M.P. et al. Relief of benign prostatic hyperplasia-related bladder outlet obstruction after transarterial polyvinyl alcohol prostate embolization. J. Vasc. Interv. Radiol. 2000;11(6):767-770. 7. Carnevale F.C., Antunes A.A., da Motta Leal Filho J.M. et al. Prostatic artery embolization as a primary treatment for benign prostatic hyperplasia: preliminary results in two patients. Cardiovasc. Intervent. Radiol. 2010;33(2): 355-361. 8. Worthington-Kirsch R.L., Andrews R.T., Siskin G.P. et al. Uterine fibroid embolization: technical aspects. Tech. Vasc. Interv. Radiol. 2002;5:17-34. 9. Carnevale F.C., da Motta-Leal-Filho J.M., Antunes A.A. et al. Quality of life and symptoms relief support prostatic artery embolization for patients with acute urinary retention due to benign prostatic hyperplasia. J. Vasc. Interv. Radiol. 2012;24:535-542. 10. Bilhim T., Pisco J., Rio Tinto H. et al. Unilateral versus bilateral prostatic arterial embolization for lower urinary tract symptoms in patients with prostate enlargement. Cardiovasc. Intervent. Radiol. 2013;36(2):403-411. 11. Mclvor J., Rhymer J.C. 245 transaxillary arteriograms in arteriopathic patients: success rate and complications. Clin. Radiol. 1992;45(6):390-394. 12. Jolly S.S., Yusuf S., Cairns J. et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011; 377(9775):1409-1420. 13. Tavris D.R., Gallauresi B.A., Lin B. et al. Risk of local adverse events following cardiac catheterisation by hemostasis device use and gender. J. Invasive Cardiol. 2004; 16(9):459-464. 14. Kanei Y, Kwan T., Nakra N.C. et al. Transradial cardiac catheterization: A review of access site complications. Catheter Cardiovasc. Interv. 2011;78(6):840-846. 15. Caputo R.P, Tremmel J.A., Rao S. et al. Transradial arterial access for coronary and peripheral procedures: Executive summary by the transradial committee of the SCAI. Catheter Cardiovasc. Interv. 2011;78(6):823-839. 16. Sherev D.A., Shaw R.E., Brent B.N. Angiographic predictors of femoral access site complications: implication for planned percutaneous coronary intervention. Catheter Cardiovasc. Interv. 2005;65(2):196-202.