Abstract: Aim: was to evaluate possibilities and advantages of endovascular treatment of intracranial aneurysms (IA) and arteriovenous malformations (AVM) using three-dimensional navigation (3D-roadmapping). Materials and methods: during 2010-2013 years 103 embolizations of IA and AVM ir 88 patients were performed in our angiography department. Embolizations of IA were managed by metallic detachable coils, embolizations of AVM - by Histoacryl : Lipiodol glue composition. 3D-roadmapping technique was applied for guidance of endovascular tools in cerebral arteries anc catheterization the IA cavity and AVM-feeding arteries during the procedure. 3D-roadmapping technique is based on creation of composite images that consist of two-dimensional fluoroscopic views superimposed on virtual three-dimensional model of the vessel. Results: endovascular interventions with 3D-roadmapping were performed in 65(63%) cases. In 49 (75%) cases we used 3DRA data to create three-dimensional model of cerebral vessels and in 16 (25%) cases - CT-angiography data. Complex algorithm of diagnosis and endovascular treatment of IA and AVM using 3D-roadmapping was introduced. Conclusion: our experience of the endovascular embolization of IA and AVM with 3D-roadmapping convincingly showed that usage of this technique is possible and effective. In comparison with two-dimensional navigation there was a tendency in reduction of the effective exposure dose, also there was a statistically significant decrease of amount of contrast material , and of time for superselective catheterization of AVM-feeding arteries and IA cavity. References 1. Becske T., Jallo G.I. Chief Editor: Lutsep H.L. Subarachnoid Hemorrhage. Updated: Oct 20, 2011 Available at: http://www.emedicine.medscape.com. 2. Krylov V.V., Prirodov A.V., Petrikov S.S. Netravmaticheskoe subarahnoidal'noe krovoizlijanie: diagnostika i lechenie [Nontraumatic subarachnoid hemorrhage: diagnosis and treatment.]. Consilium Medicum. Bolezni serdca i sosudou 2008; 1: 14-18 [In Russ]. 3. Методические Указания 2.6.1.2944-11 «Контроль эффективных доз облучения пациентов при проведении медицинских рентгенологических исследований». Metodicheskie Ukazanija 2.6.1.2944-11 «Kontrol jeffektivnyh doz obluchenija pacientov pri provedenii medicinskih rentgenologicheskih issledovanij»[«Control of effective patient dose in medical X-ray examinations»] [In Russ]. 4. 5. Debrun G.M., Aletich V.A., Kehrli P., et al: Selection of cerebral aneurysms for treatment using Guglielmi detachable coils: The preliminary 6. Debrun G.M., Aletich V.A., Kehrli P., Misra M., Ausman J.I., Charbel F. Selection of cerebral aneurysms for treatment using Guglielmi detachable coils: the preliminary 7. Fernandez Zubillaga A., Guglielmi G., Vinuela F.. Duckwiler G.R. Endovascular occlusion of intracranial aneurysms with electrically detachable coils: correlation of aneurysm neck size and treatment results. AJNR Am. J. Neuroradiol. 1994;15: 815-820. 8. Svistov D.V., Pavlov O.A., Kandyba D.V., Nikitin A.I., Savello A.V., Landik S.A., Arshinov B.V.. Znachenie vnutrisosudistogo metoda v lechenii pacientov s anevrizmaticheskoj bolezn'ju golovnogo mozga [Meaning of intravascular method in patients with aneurysmal disease brain.]. Nejrohirurgija. 2011; 1: 21-28 [In Russ]. 9. Gallas S., Januel A.C., Pasco A., Drouineau J., Gabrillargeus J., Gaston A., Cognard C., Herbreteau D. Long-term follow-up of 1036 cerebral aneurysms treated by bare coils: a multicentric cohort treated between 1988 and 2003. J. Amer. J. Neuroradiol. 2009; 30(10): 1986-1992.