Website is intended for physicians
Всего найдено: 6



Aim: was to evaluate the effectiveness of carotid arterial revascularization by stenting of internal carotid arteries (ICA) in patients with a previous ischemic stroke.

Materials and methods: in FSBI «Treatment and rehabilitation center» of the Ministry of Health of Russia,104 patients on treatment and rehabilitation after previous ischemic stroke, underwent stenting of symptomatic atherosclerotic stenosis of the ICA. The average time since stroke was 67 days (from 28 to 273 days). ICA stenting was performed according to generally accepted standards with the mandatory use of intravascular protective devices against cerebral embolism. In most patients we used a filter protection system (77 observations), and for stenosis of more than 95% and in the presence of an unstable atherosclerotic plaque, a proximal defense system was used (27 patients). In some cases, if the situation required it, a combination of protective devices was used (5 observations). A few days before upcoming operation, all patients were evaluated for microcirculation and perfusion in brain tissue using single photon emission computed tomography (SPECT), followed by analysis of results and comparison with SPECT data in the postoperative period.

Results: when analyzing 30 days after stenting, there were no fatal outcomes. In one case (0.96%) after stenting of the subtotal stenosis of the ICA, a hemorrhagic stroke on the ipsilateral side developed on the fifth day. In another case, intraoperative embolism of the ophthalmic artery occurred on the side of the operation with partial loss of vision field.

In the long-term period (4 years and 7 months), the number of undesirable events was 2%. In one case (0.96%), the patient died of ischemic stroke on the ipsilateral side after 3 years and 2 months after stenting. In another case, patient after 1 year and 2 months had an ischemic stroke on the side of the operation. Thus, the total number of complications associated with ICA stenting (30-day period + long-term period) was 3.8%.

When evaluating results of stenting by the SPECT method, the state of cerebral perfusion was assessed using perfusion maps in two modes and by axial perfusion sections.

In all observations after stenting, improvement of cerebral perfusion was noticed, regardless of the side and severity of ICA stenosis and the presence of focal postischemic changes. Visually, perfusion sections show a general increase in cerebral blood perfusion (CBP), a decrease in one-sided focal deficiency of CBP . Same results were obtained for relative cortex perfusion (relCP) in four regions and in vascular basins.

Comparing results, obtained by the number of undesirable events (strokes, restenosis and death) with the four-year data of the analysis of the international CREST study, the complication rate in our group is significantly lower (3.8% versus 8.6% in the CREST stenting group and 8.4% in carotid endarterectomy group CREST).

Conclusion: carotid stenting is an effective method of treatment of atherosclerotic lesions of main cerebral arteries in patients with previous stroke. The effectiveness of this type of treatment is confirmed by a positive clinical result and with the help of modern diagnostic methods, in particular SPECT.



1.     Damulin IV, Parfenov VA, Skoromets AA, Yah NN. Circulatory disorders in the brain and spinal cord. In the book: «Diseases of the nervous system. A guide for doctors». Yakhno N.N., Shtulman D.R. (ed.). 2003; 231302 [In Russ].

2.     Thom T, Haase N, Rosamond W et al. Heart disease and stroke statistics - 2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2006;113:e85-151.

3.     Kleindorfer D, Panagos P, Pancioli A et al. Incidence and short term prognosis of transient ischemic attack in a population-based study. Stroke. 2005;36: 720-723.

4.     Gusev EI, Skvortsova VI, Stakhovskaya LV. The problem of stroke in the Russian Federation: a time of active joint action. Zhurn. nevrol. and a psychiatrist. 2007; 8: 4-10 [In Russ].

5.     Gusev EI, Skvortsova VI, Stakhovskaya LV. Epidemiology of stroke in the Russian Federation. appendix of the Journal. nevrol. and a psychiatrist. them. SS Korsakova. 2003; 8: 4-9 [In Russ].

6.     Pinchuk EA. «Epidemiology and secondary prevention of ischemic stroke in a large industrial and cultural center» Diss. Cand. med. sciences. Ekaterinburg, 2004;136-137 [In Russ].

7.     Kadykov AS. Prevention of repeated ischemic stroke. AS Kadykov, NV Shakhparonova. Consilium medicum. 2006; 2: 96-99 [In Russ].

8.     Pokrovsky AV, KiyashkoVA. Ischemic stroke can be prevented. Rus. med. Journal. 2003; 11 (12): 691-695 [In Russ].

9.     Parfenov VA, Gurak SV. Repeated ischemic stroke and its prevention in patients with arterial hypertension. Zhurn. nevrol. and psychiatrist. them. SS Korsakova. Stroke. 2005; 14: 3-7 [In Russ].

10.   Sacco RL, Adams R, Albers G et al. Guidelines for Prevention of Stroke in Patients With Ischemic Stroke or Transient Ischemic Attack: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association Council on Stroke: Co-Sponsored by the Council on Cardiovascular Radiology and Intervention: The American Academy of Neurology affirms the value of this guideline. Stroke. 2006; 37: 577 - 617.

11.   Touze E, Varenne O, Chatellier G et al. Risk of myocardial infarction and vascular death after transient ischemic attack and ischemic stroke: a systematic review and meta-analysis. Stroke. 2005; 36:2748-2755.

12.   Kjellstrom T, Norrving B, Shatchkute A. Helsingborg Declaration 2006 on European Stroke Strategies. Helsingborg Declaration 2006 On European Stroke Strategies; pp. 9-12. Cerebrovasc Dis. 2007; 23(2-3): 231-41.

13.   European Carotid Surgery Triallists Collaborative Group: NRC European Carotid Surgery Trial; Interim results for symptomatic patients with severe (70-99%) or with mild (0-29%) carotid stenosis. Lancet. 1991; 337:1235-1243.

14.   North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effects of carotid endarterectomy in symptomatic patients with high-grade stenosis. N Engl J Med. 1991; 325:445-453.

15.   Asymptomatic Carotid Atherosclerosis Study. Clinical advisory: Carotid endarterectomy for patients with asymptomatic internal carotid artery stenosis. Stroke. 1994; 25:2523-2524.

16.   Brott TG, Hobson RW 2nd, Howard G, Roubin FS, et al. "CREST Investigators. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med. 2010 Jul 1;363(1):11-23.

17.   Brown MM, Mas JL, Ringleb PA, Hacke W. Carotid artery stenting versus surgery: adequate comparisons? Lancet Neurol. 2010 , 9:341-342.

18.   Volzhenin VE, Dolinina EG, Dontsov AE et al. The state of cerebral blood flow according to SPECT, MRI and MPA. Thes. doc. 2nd Congress of the Russian Society of Nuclear Medicine. Modern problems of nuclear medicine and pharmaceuticals. Obninsk, 2000; 174-175 [In Russ].



19 males with unilateral symptomatic internal carotid artery stenosis were stented in 2007 using Mo.Ma cerebral protection device (Invatec, Italy). Angiographic success rate was 100%, average procedure time 53,7±9,9 min, ICA occlusion time 53,7±19,9 min. 2 patients presented transitory ischemic attack. Clinical improvement achieved in all cases. Our experience demonstrates that the Mo.Ma device effectively prevents intraprocedural cerebral embolism in carotid stenting, and the idea of proximal protection seems to be safe, user-friendly and very promising. 





1.     Brown M., Rogers J., Bland J. et al.Endovascular versus surgical treatment inpatients with carotid stenosis in the Carotidand Vertebral Artery Transluminal Angioplasty Study (CAVATAS): a randomised trial.The Lancet. 2001; 357: 1729-1737.

2.     Brooks W., McClure R., Jones M. et al. Carotidangioplasty and stenting versus caroti-dendarterectomy: randomized trial in a comnity hospital.J. Am. Coll. Cardiol. 2001; 38 (6):1589-1595.

3.     Wholey M.H., Al-Mubarek N., Wholey M.H.Updated review of the global carotid arterystent registry. Catheter. Cardiovasc. Interv. 2003.60 (2): 259-266.

4.     Roubin G., New G., Iyer S. et al. Immediateand late clinical outcomes of carotid artery stenting in patients with symptomatic and asymptomatic carotid artery stenosis: a 5-yearanalysis. Circulation. 2001; 103 (4): 532-537.

5.     McKevitt F.M., Macdonald S., Venables S. Et al. Complications following carotid angioplasty and carotid stenting in patients with symptomatic carotid artery disease. Cerebrovasc. Dis. 2004; 17 (1): 285-34.

6.     Ahmadi R., Willfort A., Lang W. et al. Carotidartery stenting: effect of learning curve and intermediate-term morphological outcome./Endovasc. Ther. 2001; 8 (6): 539-546.

7.     Reimers B., Schluter M., Castriota F. et al.Routine use of cerebral protection duringcarotid artery stenting: results of a multicenterregistry of 753 patients. Am. J. Med. 2004;116 (4): 217-222.


8.     Cremonesi A., Manetti R., Setacci F. et al.Protected carotid stenting: clinical advantagesand complications of embolic protectiondevices in 442 consecutive patients. Stroke.2003; 34 (8): 1936-1941.


9.     Aronow Н., Yadav J. Embolic Protection forCarotid Artery Stenting. A 'No Brainer'.Actachir. belg. 2004; 104: 65-70.



In clinical practice, ischemic stroke still remains a difficult problem, being in most leading causes of death. Development of new treatments, founding of new therapeutic algorythmes and untiringly technical progress in sphere of instrumental support of operation-room allow to proceed endovascular intervention in group of patients with cardioembolic stroke.

Case report presents successful endovascular treatment of patient from cardio-surgical department of Belgorod Region Clinical Hospital named after St. loasaf, with cardioembolic stroke, onset in preoperative period (before aorto-coronary bypass).

Materials and methods: patient A., 59 years, diagnosis: «Ischemic heart disease. Exertional angina FC II. Post-infarction cardiosclerosis. (AMI in September 2014). Stenosis of coronary arteries according to coronary angiography (CAG), hemodynamically significant. Hypertensive heart disease III st., 2 degree, with the defeat of the heart and blood vessels of the brain, with the achievement of target blood pressure (BP). Diabetes mellitus type 2, the second insulin-depended, stage subcompensation. Risk factor 4. congestive heart failure 2a class, functional class III. Chronic gallstone disease. Chronic calculous cholecystitis without exacerbation». 05.02.15 - onset of ischemic stroke in left hemisphere of brain. Patient urgently underwent: multislice computed tomography (MSCT), MSCT-angiography of main brain arteries, direct angiography of main brain arteries. Survey showed: occlusion of proximal third of left common carotid artery (CCA) with TICI-0 blood flow; left middle cerebral artery (MCA) and anterior cerebral artery (ACA) were filled threw anterior communicating artery (ACoA) from right internal carotid artery (ICA). Patient underwent: recanalization of occlusion, thrombectomy from left CCA, stenting of CCA-ICA segment, selective thrombolythic therapy into left MCA.

Results: «Time-To-Treatment» was 4 hours 15 minutes. Made endovascular treatment leaded to regression of neurological deficit.

Conclusions: the use of endovascular methods in patients with cardioembolic stroke car decrease neurological deficit and increase quality of life of patients in this group.  




1.    «10 ведущих причин смерти в мире». ВОЗ. Информационный бюллетень №310 от 05.2014.



2.    Parfenov V.A., Khasanov D.R.. Ishemicheskiy insult. [Ischemic stroke.] «Medicinskoe informacionnoe agenstov». 2012; 298 [In Russ].


3.    Fonyakin A.V., Geras'kina L.A. Profilaktika ishemicheskogo insulta. Rekomendacii po antitromboticheskoy terapii. [Prophylaxis of ischemic stroke. Recommendations for antithrombotic therapy] (Pod redaktsiei Z.A. Suslinoy). M: IMA-PRESS. 2014; 72.


4.    Michael J. Schneck et al. Overview cardioembolic stroke. Section 20.01.2015 http://emedicine. /article/1160370-overview#aw2aab6b2


5.    Wilterdink J.L., Furie K.L., Easton D. Cardiak evaluation of stroke patients. Neurology 1998; 51(3): 23-26.


6.    Petty G.W., Brown R.D., Whisnant J.P. et al. Ischemic stroke subtypes. A populationbased study of functional outcome, survival and recurrence. Stroke. 2000; 31: 1062-1068.


7.    Kelley R.E., Minagar A. Cardioembolic Stroke: An Update. South Med J. 2003; 96(4): 343-349.


8.    Secades J.J. Citicoline: pharmacological and clinical review, 2010 update / J. Secades. Revista de Neurologia. 2011; 52(2): 1-62.



9.    Kuznetsov V.V., Egorova M.S., Fibrillyacia predserdiy kak patogeneticheskiy mekhanizm razvitiya kardioembolicheskogo insulta. [Atrial fibrillation - a pathogenetic mechanism of cardioembolic stroke.] Nevrologia. Kardiologia. 2011; 4(150): 46-49 [In Russ].


10.  Mooe Th., Tienen D., Karp K., et al. Long-term follow-up of patients with anterior miocardial infarction complicated by left ventricular thrombus in the thrombolytic era. Heart. 1996; 75(3):252-6.



11.  Vereshagin N.V., Piradov M.A., Suslina Z.A. (red). Insul’t. Principi diagnostiki, lecheniya I profilaktiki. [Stroke: principles of diagnosis, treatment and prophylaxis.]. M, Intermedika, 2002; 208.



12.  Suslina Z.A., Vereshagin N.V., Piradov M.A., Podtipi ishemicheskikh narusheniy mozgovogo krovoobrasheniya: diagnostika i lechenie. [Subtypes of ischemic cerebrovascular disorder: diagnosis and treatment]. Consilium medicum. - 2001; 3(5): 218-221.



13.  Albers G.W., Comess K.A., De Rook F.A. et al. Transesophageal echocardiographic findings in stroke subtypes. Stroke. 1994; 25: 23-28.



14.  Akhmedov A.D-O. Karotidnaya endarterektomiya u bol’nikh s visokim khirurgicheskim riskom. [Carotid endarterectomy in patients with high operation risk]. Diss. Mos




Acute cerebrovascular accident (CVA) is one of leading causes of death and disability in the population, both in Russia and around the world.

Aim: was to improve the effectiveness of the prevention of ischemic stroke (IS) in patients with asymptomatic stenosis of internal carotid arteries (ICA).

Materials and methods: this article is an analysis of the world literature on the subject of stroke in patients without focal or ocular symptoms (asymptomatic stenosis), medical and surgical (carotid stenting / carotid endarterectomy) correction of such stenotic lesions, postoperative complications, and the risk of stroke in the immediate and late postoperative period. We presented data on development of stroke, depending on the type of plaques, brain CT data, comorbidities in these patients, the method of surgical correction of stenosis. On the basis of international multicenter studies and experience of individual domestic and foreign clinics we performed evaluation of IS conservative anc surgical prophylaxis in this group of patients.

Results: performed analysis allowed to formulate recommendations on the tactics of treatment and examination of patients with asymptomatic internal carotid artery stenosis.



1.     Bokerija L.A., Gudkova R. G. Serdechno-sosudistaja hirurgija. 2010; Bolezni i vrozhdennye anomalii sistemy krovoobrashhenija. [Cardio-vascular surgery. 2010. Diseases and congenital abnormalities of blood circulation]. M.: NCSSH im. A.N. Bakuleva RAMN. 2011; 192 [In Russ].

2.     Pokrovskij A.V. Klinicheskaja angiologija. A.V. Pokrovskij. [Clinical Angiology]. Moscow; 2004;1; 808. [In Russ]. 

3.     Chernjavskij A.M. Programma bor'by s insul'tom, prehodjashhimi narushenijami mozgovogo krovoobrashhenija i discirkuljatornymi jencefalopatijami: metod. rekomendacii A.M.Chernjavskij, T.E.Vinogradova. [The program for prevention of stroke, TIA and encephalopathy: recommendations]. Novosibirsk; 2002;17. [In Russ].

4.     Go A.S., Mozaffarian D., Roger V.L. et al; on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics - 2014 update: a report from the American Heart Association. Circulation. 2014;129:e28-e292.

5.     Kleindorfer D., Panagos P, Pancioli A., et al. Incidence and short-term prognosis of transient ischemic attack in a population-based study. Stroke. 2005; 36:720-723.

6.     Suslina Z.A. Ocherki angionevrologii. [Angionevrology contexts] . Moscow: 2005; 126. [In Russ].

7.     Leljuk V.G., Leljuk S.Je. Cerebral'nyj rezerv pri ateroskleroticheskom porazhenii brahiocefal'nyh arterij. Jetjudy sovremennoj ul'trazvukovoj diagnostiki. [Mechanisms of development of cerebral vascular compensation due to atherosclerotic lesions of cerebral arteries]. Kiev; 2001; 4p. [In Russ].

8.     Nacional'nye rekomendacii po vedeniju pacientov s zabolevanijami brahiocefal'nyh arterij. Rossijskij soglasitel'nyj dokument. [National recommendations for treatment of patients with cerebrovascular disorders]. Angiologija i sosudistaja hirurgija. 2013; 19 (2): 70. [In Russ].

9.     Committee for the National Institute of Neurological Disorders and Stroke. Special report from the National Institute of Neurological Disorders and Stroke. Classification of cerebrovascular diseases III. Stroke. 1990;21:637-76.

10.   Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA. 1995;273(18): 1421-8.

11.   Halliday A., Harrison M.. Hayter E. et al. 10-year stroke prevention after successful carotid endarterectomy for asymptomatic stenosis (ACST-1): a multicentre randomised trial. Lancet. 2010;376(9746): 1074-84.

12.   Chambers B.R. Donnan G.A. Carotid endarterectomy for asymptomatic carotid stenosis. Cochrane Database Syst Rev. 2005(4):CD001923.

13.   Barnett H.J., Meldrum H.E., Eliasziw M. North American Symptomatic Carotid Endarterectomy Trial collaborators. The appropriate use of carotid endarterectomy. CMAJ. 2002; 166(9):1169-79.

14.   Inzitari D., Eliasziw M., Gates P et al. The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl. J. Med. 2000;342(23): 1693-700.

15.   Chaturvedi S., Bruno A., Feasby T. et al. Carotid endarterectomy an evidence-based review: report of the Therapeutics and Technology Assessment Subcommittee of the  AmericanAcademy of Neurology. Neurology. 2005;65(6):794-801.

16.   Pahigiannis К., Kaufmann P Koroshetz W. Carotid intervention: is it warranted in asymptomatic individuals if risk factors are aggressively managed? Stroke. 2014;45(3):e40-l.

17.   Abbott A.L. Medical (nonsurgical) intervention alone is now best for prevention of stroke associated with asymptomatic severe carotid stenosis: results of a systematic review and analysis. Stroke. 2009;40(10):e573-83.

18.   Spence J.D. Tamayo A. Lownie SP et al. Absence of microemboli on transcranial Doppler identifies low-risk patients with asymptomatic carotid stenosis. Stroke. 2005;36(ll):2373-8.

19.   Spence J.D. Coates V., Li H. et al. Effects of intensive medical therapy on microemboli and cardiovascular risk in asymptomatic carotid stenosis. Arch Neurol. 2010;67(2): 180-6.

20.   Markus H., King A., Shipley al. Asymptomatic embolisation for prediction of stroke in the Asymptomatic Carotid Emboli Study (ACES): a prospective observational study. LancetNevrol. 2010; 9:663-71.

21.   Kakkos S.K., Sabetai M., Tegos T. et al. Silent embolic infarcts on computed tomography brain scans and risk of ipsilateral hemispheric events in patients with asymptomatic internal carotid artery stenosis. J. Vasc. Surg. 2009;49;903-909.

22.   Hougaku H., Matsumoto M., Handa N. et al. Asymptomatic carotid lesions and silent cerebral infarction. Stroke. 1994;25:566-70.

23.   Tegos T.J., Sabetai M.M., Nicolaides A.N. et al. Patterns of brain computed tomography infarction and carotid plaque echogenicity. J. Vasc. Surg. 2001;33:334-9.

24.   Hashimoto H., Tagaya M., Niki H. Htani H. Computer-assisted analysis of heterogeneity on В-mode imaging predicts instability of asymptomatic carotid plaque. Cerebrovasc. Dis. 2009;28:357-64.

25.   Liapis С., Kakisis J., Kostakis A. Carotid Stenosis. Factors Affecting Symptomatology. Stroke. 2001; 32:2782-2786.

26.   Nicolaides А., Kakkos S., Kyriacou E. et al. Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification. J.Vasc. Surg. 2010;52:1486-96.

27.   Yi-Ning Qian, Yong-Ting Luo, Hong-Xia Duan et al. Adhesion Molecule CD146 and its Soluble Form Correlate Well with Carotid Atherosclerosis and Plaque Instability. CNS Neuroscience & Therapeutics 2014; 20:438-445.

28.   Jones C.B., SaneD.C., Herrington D.M. Matrix metalloproteinases: a review of their structure and role acute coronary syndrome. Cardiovasc. Res. 2003,59: 812-823. 

29.   Carlos T.M., Harlan J.M. Leukocyte-endothelial adhesion molecules. Blood. 1994;84:2068-2101.

30.   Inoue M., Ishida T., Yasuda T., et al. Endothelial cell-selective adhesion molecule modulates atherosclerosis through plaque angiogenesis and monocyte-endothelial interaction. Microvasc. Res. 2010;80:179-187.

31.   McEver R.P Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. 2002;14:581-586.

32.   Hwang S.J., Ballantyne C.M., Sharrett A.R., et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation. 1997,96:4219-4225.

33.   Pelisek J., Rudelius M., Zepper P., et al. Multiple biological predictors for vulnerable carotid lesions. Cerebrovasc. Dis. 2009;28:601-610.

34.   Abbott A.L., Paraskevas K.I., Kakkos S.K. et al. Systematic Review of Guidelines for the Management of Asymptomatic and Symptomatic Carotid Stenosis. Stroke. 2015 Nov;46(11):3288-301.

35.   Goldstein L.B. Bushnell C.D. Adams RJ. et al. Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011 ;42(2): 517-84.

36.   Brott T.G., Hobson 2nd R.W. Howard G. et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N. Engl. J.Med. 2010;363(1): 11-23.

37.   Voeks J.H., Howard G., Ronbin G.S, Malas M.B et al. Age and outcomes after carotid stenting and endarterectomy: the carotid revascularization endarterectomy versus stenting trial. Stroke. 2011;42( 12):3484-90.

38.   Nallamothu B.K., Lu M., Rogers M.A. et al. Physician specialty and carotid stenting among elderly medicare beneficiaries in the United States. Arch. Intern. Med. 2011; 171 (20): 1804-10. 

39.   Gowri R., Denish M., Nira H. et al. Management Strategies for Asymptomatic Carotid Stenosis. Ann. Intern. Med. 2013;158:676-685.

40.   Pahigiannis К., Kaufmann P., Koroshetz W. Carotid intervention: is it warranted in asymptomatic individuals if risk factors are aggressively managed? Stroke. 2014;45(3):e40-l. 



Revascularization strategy definition in acute coronary syndrome in patients with multivessel coronary artery disease is a significant problem of modern interventional cardiology.

Aim: was to evaluate effectiveness of special PC programs «Sapphire 2015 - Right dominance» and «Sapphire 2015 - Left dominance» designed to the revascularization strategy definition ir acute coronary syndrome patients.

Materials and methods: revascularization strategy of 50 acute coronary syndrome patients was analyzed. In all cases the revascularization strategy was defined by the group of intervention cardiologists with the help of independent experts and special PC programs «Sapphire 2015 - Right dominance» and «Sapphire 2015 - Left dominance». Experts-, physicians-, and soft- based revascularization strategies were compared among themselves

Results: complete coincidence between expert-based and soft-based revascularization strategies was registered in 66% patients and the incomplete coincidence - in 32% patients. Complete mismatch between expert-based and soft-based revascularization strategies was registered in 2% patients. The complete coincidence between physicians-based and soft-based revascularization strategies was registered in 42% patients and the incomplete coincidence - ir 52% patients. Complete mismatch between physicians-based and soft-based revascularization strategies was registered in 6% patients.

Conclusion: as well as experts, special PC programs «Sapphire 2015 - Right dominance» and «Sapphire 2015 - Left dominance» provide success in the revascularization strategy definition 1г acute coronary syndrome patients with multivessel coronary artery disease.



1.     ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/ SAIP/ SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease. Circulation. 2011; 124:54-130.

2.     Cohen D, Stolker J, Wang К, et al. Health-Related Quality of Life After Carotid Stenting Versus Carotid Endarterectomy. Results From CREST (Carotid Revascularization Endarterectomy Versus Stenting Trial). JACC Vol. 2011;15:58.

3.     Amirdjanova V.N., Goryachev D.V., Korshunov N.I., Rebrov A.P., Sorotskaya V.N. Populyatsionnie pokazateli kachestva zhizni po oprosniku SF-36 (rezultati mnogotsentrovogo issledovaniya kachestva zhizni) Mirazh. [Population' indicators of quality of life questionnaire SF-36 (results of a multicenter study of quality of life «MIRAGE»).]. Rheumatology Science and Practice. 2008;46(1):36-48. [In Russ].

4.     Stolker JM, Mahoney EM, Safley DM, et al. Health-related quality of life following carotid stenting versus endarterectomy: results from the SAPPHIRE (Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy) trial. J Am Coll Cardiol Intv. 2010;3: 515-23.

5.     PQcTte E, Slisers M, Miglane E et al. Health-Related Quality of Life Among Patients with Severe Carotid Artery Stenosis. The Journal of Latvian Academy of Sciences. 2015; 5:237-242.

6.     Kazmierski P, Kasielska A, Bogusiak K, Lysakowski M, Stela О gowski M. Influence of internal carotid endarterectomy on patients’ life quality. Pol Przegl Chir. 2012;84:17-22.

7.     Shan L. Saxena A .Quality of Life and Functional Status After Carotid Revascularisation: A Systematic Review and Meta-Analysis. Eur J Vasc Endovasc Surg. 2015;49: 634-645.

8.     Stolker JM, Mahoney EM, Safley DM, et al. Health-related quality of life following carotid stenting versus endarterectomy: results from the SAPPHIRE (Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy) trial. J Am Coll Cardiol Intv. 2010;3: 515-523.

9.     CaRESS Steering Committee. Carotid Revascularization Using Endarterectomy or Stenting Systems (CaRESS) phase I clinical trial: 1-year results. J Vasc Surg. 2005;42:213-219.




Aim: was to estimate efficacy and safety of carotid stenting and carotid endarterectomy Г patients, admitted to center of cardiovascular surgery.

Material and methods: we investigated possibilities of treatment with randomization one-by-one, according to admittance to hospital and use of carotid endarterectomy or stenting. Final decision in each case was made by consilium. For the period 2011-2013, 269 patients were treated including 132 patients who underwent carotid endarterectomy and 137 patients who underwent carotid stenting. The majority of patients had an anamnesis of coronary heart disease or needed coronary revascularization. Symptomatic stenosis was an indication for 19,0 % revascularization in both groups (p = 0.994).

Results: there were no in-hospital deaths registered. Incidence of stroke after carotid endarterectomy was 6(4,5%) and 2(1,5%) after stenting. Transient ischemic attack occurred in 3(2,2 %) patients in the stenting and 1 patient (0,76 %) in endarterectomy groups. Major bleeding was observed in both groups with equal frequency (p = 0,584). Defeat of cranial nerves (7,6 %; p = 0,001) was only observed in the endarterectomy group. Finally both methods of carotid revascularization showed the same level of complications (p = 0,569) besides cranial nerve defeat.

Conclusion: carotid stenting and endarterectomy show similar results in the treatment of patients with atherosclerotic lesions of carotid arteries. Both methods can equally be used in clinics with adequate experience in surgical interventions on the heart and peripheral vessels. The complex assessment of the patient and the lesion by the vascular team is necessary.



1.     Casserly I.P, Sachar R., Yadav J.S. Practical peripheral vascular interventions. Second edition. Wolters Kluwer Health/Lippincott Williams & Wilkins. Philadelphia. 2011; 466 p.

2.     Cutlip D. E., Pinto D. S. Extracranial carotid disease revascularization. Circulation. 2012; 126(22): 2636-2644.

3.     Eller J. L., Dumont T. M., Sorkin G. C., Mokin M., Levy E. I., Kenneth V., L. Hopkins N., Siddiqui A. H. Endovascular advances for extracranial carotid stenosis. Neurosurgery. 2014; 74: 92-101.

4.     Al - Damluji M. S., Nagpal S., Stilp E., Remetz M., Mena C. Carotid revascularization: A systematic review of the evidence. J. Interv. Card. 2013; 26 (4): 399- 410.

5.     Tendera M., Aboyans V., Bartelink M-L., Baumgartner I., Clement D., Collet J-P, Cremonesi A., De Carlo M., Erbel R., Gerry F., Fowkes R., Heras M., Kownator S., Minar E., Ostergren J., Poldermans D., Riambau D., Roffi M., Rother J., Sievert H., van Sambeek M., Zeller T. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases. European Heart Journal. 2011; 32: 2851 - 2906.

6.     White C. J., Ramee S. R., Collins T. J., Jenkins J. S., Reilly J. P, Patel R. A. G. Carotid artery stenting: patient, lesion, and procedural characteristics that increase procedural complications. Catheterization and Cardiovasc. Interv. 2013; 82: 715-726.

7.     Tas M. H., Simsek Z., Colak A., Koza Y, Demir P, Demir R., Kaya U., Tanboga I. H., Gundogdu F., Sevimli S. Comparison of carotid artery stenting and carotid endarterectomy in patients with symptomatic carotid artery stenosis: A single center study. Adv. Ther. 2013; 30: 845 853.

8.     Doig D., Brown M. M. Carotid stenting versus endarterectomy. Annu. Rev. Med. 2012; 63: 259-276.

9.     Ballotta E., Angelini A., Mazzalai F., Piatto G., Toniato A., Baracchini C. Carotid endarterectomy for symptomatic low-grade carotid stenosis. J. Vasc. Surg. 2014; 59(1): 25-31.

10.   Jashari F., Ibrahimi P., Nicoll R., Bajractari G., Wester P., Henein M. I. Coronary and carotid atherosclerosis: similarities and differences. Atherosclerosis. 2013; 227: 193-200.

11.   Schermerhorn M.L., Fokkema, M., Goodney P., Dillavou, E. D., Jim J., Kenwood C. T., Siami F. S., White R. A. The impact of Centers for Medicare and Medicaid Services high-risk criteria on outcome after carotid endarterectomy and carotid artery stenting in the SVS Vascular Registry. J. Vasc. Surg. 2013; 57: 1318 - 1324.

12.   Roffi M., Sievert H., Gray W. A., White C. J., Torsello G., Cao P., Reimers B., Mathias K., Setacci C., Schonholz C., Clair D. G., Schillinger M., Grunwald I., Bosiers M., Abou-Chebl A., Moussa I. D., Mudra H., Iyer S. S., Scheinert D., Yadav J. S., van Sambeek M. R., Holmes D. R., Cremonesi A. Carotid artery stenting versus surgery: adequate comparisons? Lancet. Neurol. 2010; 9: 339 - 341.

13.   Timaran C.H., Mantese V. A., Malas M., Brown O. W., Lal B. K., Moore W. S., Vocks J. H., Brott T. G. Differential outcomes of carotid stenting and endarterectomy performed exclusively by vascular surgeons in the Carotid Revascularization Endarterectomy versus Stenting Trial (CREST). J. Vasc. Surg. 2013; 57: 303-308.

14.   Fokkema M., de Borst G. J., Nolan B. W., Indes J., Buck D. B., Lo R. C., Moll F. L., Schermerhorn M. L. Clinical relevance of cranial nerve injury following carotid endarterectomy. Eur. J. Vasc. and Endovasc. Surg. 2014; 47(1): 2-7.

15.   Thirumala P., Kumar H., Bertolet M., Habeych M., Crammond D., Balzer J. Risk factors for cranial nerve deficits during carotid endarterectomy: A retrospective study. Clinical Neurol. and Neurosurg. 2015; 130:150-154.
 (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы