Website is intended for physicians
Search:
Всего найдено: 3

Abstract:

Aim: was to study the impact of angiographic projection on patient and operator radiation dose during endovascular interventions aimed at diagnosing and treating cerebrovascular diseases.

Materials and methods: in experiment, radiation dose rate of phantom model (cGy?cm2/s) and equivalent dose rate from scattered radiation (mSv/h) measured in the area of conditional location of operator were studied when the angle of the X-ray tube was changed in modes of digital subtraction angiography (DSA) and fluoroscopy. Radiation dose rate of endovascular surgeon (mSv/h) was assessed during 12 cerebral angiography procedures and 15 neuro-interventions in general angiographic projections. Values of the kerma-area product (Gy?cm2), fluoroscopy time (min), operator exposure dose (µSv) during 87 procedures of endovascular occlusion of aneurysm of cavernous and supraclinoid sections of internal carotid arteries (ICA) were retrospectively analyzed to indirectly assess the effect of angiographic projection on patient and surgeon occupational dose. Interventions were divided into 2 groups depending on the location of detected aneurysm. The 1st group included 35 operations in the right ICA, the 2nd group included 53 operations in the left ICA.

Results: in experimental study, highest values of radiation dose rate of the phantom model were found in frontal projection with cranial angulation, lowest - in lateral and oblique projections; The highest average dose rates from scattered radiation in operator's area were found in left lateral projections whereas the smallest in right lateral projection in DSA mode and also in frontal and right lateral projections in fluoroscopy mode.

When studying doses of scattered radiation during neuro-interventional procedures, it was found that when the position of the X-ray tube changes from 0° in the direction of left lateral projection, an increase in the average dose rate of the operator in the DSA mode is up to 2,6 times, with fluoroscopy - up to 2,4 times. The equivalent dose rate in left lateral projection is up to 1.5 times higher than in right lateral projection. In left oblique projection, there is an increase in dose rate up to 2,3 times compared to right oblique projection.When comparing radiation exposure indicators during aneurysm embolization procedures, a significant increase in operator exposure doses is observed in group of interventions in the left ICA.

Conclusion: when performing neuro-interventional procedures, it is possible to achieve a significant reduction in radiation exposure to patient and operator without a significant loss in image quality along with maintaining optimal visualization of pathological changes by choosing angiographic projections with lower radiation doses.

 

 

Abstract:

Introduction: a case report of successful treatment of an extremely rare pathology (0,27-0,34%) - acute occlusion of both internal carotid arteries (ICA) is presented.

Aim: was to show possibilities of endovascular surgery in the diagnosis and treatment of acute ischemic stroke (AIS) in patients with bilateral acute ICA occlusion.

Materials and methods: a 38-year-old patient was hospitalized by ambulance with the diagnosis of AIS. Multispiral computed tomography (MSCT) revealed left ICA occlusion in the C2-C5 segment. Selective angiography of ICA was performed: right ICA - non-occlusive thrombosis C2-C3 segments; left ICA - thrombotic occlusion in C1 segment.

Results: thrombaspiration was performed from the left ICA and right ICA; full recovery of antegrade cerebral blood flow was achieved in both ICA, according to the modified treatment in cerebral infarction score (mTICI) - 3. Patient was discharged after 28 days. At the time of discharge, the modified Rankin Scale (mRS) score was 3. 6 months after discharge mRS was 1.

Conclusions: Selective angiography of both ICA in a patient with AIS enabled to detect right ICA thrombosis not detected by MCT, which in its turn changed the treatment tactics of the patient. Aspiration thromebctomy from both internal carotid arteries allowed to achiev full recovery of antergrade cerebral blood flow of both internal carotid arteries.

 

References

1.     The top ten cuases of death, WHO fact sheets 2020.

https://www.who.int/ru/news-room/fact-sheets/detail/the-top-10-causes-of-death

2.     Shapoval IN, Nikitina SYu, Ageeva LI, et al. Zdravoochranenie v Rossii. 2019 [In Russ].

https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2019.pdf

3.     Aigner A, Grittner U, Rolfs A, et al. Contribution of established stroke risk factors to the burden of stroke in young adults. Stroke. 2017; 48: 1744-1751.

https://doi.org/10.1161/STROKEAHA.117.016599

4.     Gafarova AV, Gromova EA, Panov DО, et al. Social support and stroke risk: an epidemiological study of a population aged 25-64 years in Russia/Siberia (the WHO MONICA-psychosocial program). Neurology, Neuropsychiatry, Psychosomatics. 2019; 11(1): 12-20 [In Russ].

https://doi.org/10.14412/2074-2711-2019-1-12-20

5.     Putaala J. Ischemic Stroke in Young Adults. Continuum. 2020; 26(2): 386-414.

https://doi.org/10.1212/CON.0000000000000833

6.     Si Y, Xiang S, Zhang Y. et al. Clinical profile of etiological and risk factors of young adults with ischemic stroke in West China. Clinical Neurology and Neurosurgery. 2020; 193.

https://doi.org/10.1016/j.clineuro.2020.105753

7.     Ekker MS, Boot EM, Singhal AB, et al. Epidemiology, aetiology, and management of ischaemic stroke in young adults. The Lancet Neurology. 2018; 17(9): 790-801.

https://doi.org/10.1016/s1474-4422(18)30233-3

8.     Chi X, Zhao R, Pei H, et al. Diffusion-weighted imaging-documented bilateral small embolic stroke involving multiple vascular territories may indicate occult cancer: A retrospective case series and a brief review of the literature. Aging Med. 2020; 3(1): 53-59.

https://doi.org/10.1002/agm2.12105

9.     Dietrich U, Graf T, Sch?bitzb WR. Sudden coma from acute bilateral M1 occlusion: successful treatment with mechanical thrombectomy. Case Rep Neurol. 2014; 6: 144-148.

https://doi.org/10.1159/000362160

10.   Pop R, Manisor M, Wolff V. Endovascular treatment in two cases of bilateral ischemic stroke. Cardiovasc Intervent Radiol. 2014; 37: 829-834.

https://doi.org/10.1007/s00270-013-0746-4

11.   Larrew T, Hubbard Z, Almallouhi E.et al. Simultaneous bilateral carotid thrombectomies: a technical note. Oper Neurosurg. 2019; 5(18): 143-148.

https://doi.org/10.1093/ons/opz230

12.   Storey C, Lebovitz J, Sweid A, et al. Bilateral mechanical thrombectomies for simultaneous MCA occlusions. World Neurosurg. 2019; 132: 165-168.

https://doi.org/10.1016/j.wneu.2019.08.236

13.   Braksick SA, Robinson CP, Wijdicks EFM. Bilateral middle cerebral artery occlusion in rapid succession during thrombolysis. Neurohospitalist. 2018; 8: 102-103.

https://doi.org/10.1177/1941874417712159

14.   Jeromel M, Milosevic Z, Oblak J. Mechanical recanalization for acute bilateral cerebral artery occlusion - literature overview with a case. Radiology and Oncology. 2020; 54(2): 144-148.

https://doi.org/10.2478/raon-2020-0017

authors: 

 

Abstract:

Aim: was to show literature review and personal data on endovascular anatomy of intracranial lesions in patients with acute ischemic stroke.

Material and methods: we present clinical data on endovascular revascularization in patients with ischemic stroke, who were operated in Interregional clinical-diagnostic center for the period 2007-2014.

Results and conclusion: during cerebral angiography, we should estimate arterial, parenchymal and venous phase. Degree of flow recovery after endovascular reperfusion, is estimated on mTICI score. 

 

References

1.     Shamalov N.A. Reperfuzionnaja terapija pri ishemicheskom insul'te. Jeffektivnaja farmakoterapija [Reperfusion therapy in ischemic stroke]. 2014; 31: 54-60[ In Russ].

2.     Berkhemer O., Fransen P., Beumer D., et al., A randomized trial of intraarterial treatment for acute ischemic stroke. The New England journal of medicine. 2015 1 (37): 2-11.

3.     Li-Ping Liu, An-Ding Xu, Wong K.S., et all., Chinese consensus statement on the evaluation and intervention of collateral circulation for ischemic stroke. CNS Neuroscience & Therapeutics. 2014 (20): 202-208.

4.     Hill M., Shobha N., Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke. 2010 41 (10): 2254-2258.

5.     Mortimer A.M., Bradley M.D., Renowden S.A. Endovascular therapy in hyperacute ischaemic stroke: history and current status department of neuroradiology. Interventional Neuroradiology. 2013 (19): 506-518.

6.     Gacs G., Fox A., Barnett H., et all. Occurrence and mechanisms of occlusion of anterior cerebral artery. Stroke. 1983 (14). 952-959.

7.     Mortimer A.M., Bradley M., Renowden S.A. Endovascular therapy for acute basilar artery occlusion: a review of the literature. J. NeuroIntervent. Surg. 2011 (10): 11-36.

8.     Haussen D.C., Dharmadhikari S.S., Snelling B. Posterior communicating and vertebral artery configuration and outcome in endovascular treatment of acute basilar artery occlusion. J. NeuroIntervent. Surg. 2014 (0):1-4.

9.     Archer C.R., Horenstein S. Basilar artery occlusion: clinical and radiological correlation. Stroke. 1977 (8): 383-390.

10.   Mordasini P., Brekenfeld C., Byrne J.V., et all. Technical feasibility and application of mechanical thrombectomy with the Solitaire FR revascularization device in acute basilar artery occlusion Am. J. Neuroradiol 2013 (34): 159 -163.

11.   Liebeskind D.S., Cotsonis G.A., Saver J.L., et al. Collateral circulation in symptomatic intracranial atherosclerosis. J. Cereb. Blood. Flow. Metab. 2011 (31): 1293-1301.

12.   Christoforidis G.A., Mohammad Y, Kehagias D., et all. Angiographic assessment of pial collaterals as a prognostic indicator following intra-arterial thrombolysis for acute ischemic stroke. Am. J. Neuroradiol. 2005 (26): 1789-1797.

13.   Al-Ali F., Jefferson A., Barrow T., et al. The capillary index score: rethinking the acute ischemic stroke treatment algorithm. J. Neurointerv. Surg. 2013 (5): 139-143.

14.   McVerry F., Liebeskind D.S., Muir K.W. Systematic review of methods for assessing leptomeningeal collateral flow. Am. J. Neuroradiol. 2012 (33): 576-582.

15.   Chuang YM., Chan L., Lai YJ., et al. Configuration of the circle of Willis is associated with less symptomatic intracerebral hemorrhage in ischemic stroke patients treated with‘ intravenous thrombolysis. J. Crit. Care. 2013 (28): 166-172.

16.   Nogueira R.G., Gupta R., Jovin T.G. ET et al. Predictors and clinical relevance of hemorrhagic transformation after endovascular therapy for anterior circulation large vessel occlusion strokes: a multicenter retrospective analysis of 1122 patients J. NeuroIntervent. Surg. 2015 (7): 16-21.

17.   R.G., Liebeskind D.S., Sung G., et all. Predictors of good clinical outcomes, mortality, and successful revascularization in patients with acute ischemic stroke undergoing thrombectomy: pooled analysis of the mechanical embolus removal in cerebral ischemia (Merci) and multi Merci trials. Stroke. 2009 (40): 3777-3783.

18.   Jayaraman M.V., Hussain M.S., Abruzzo T., et al., Embolectomy for stroke with emergent large vessel occlusion (ELVO): report of the Standards and Guidelines Committee of the Society of NeuroInterventional Surgery J. NeuroIntervent. Surg. 2015 (0):1-6.

19.   Broderick J.P., Palesch YY, Demchuk A.M., et al. The interventional management of stroke (IMS) III investigators. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N. Engl. J. Med. 2013 (368): 893-903.

20.   Yoo A.J., Simonsen C.Z., Prabhakaran S., et al. Refining angiographic biomarkers of reperfusion: modified TICI is superior to TIMI for predicting clinical outcomes after intra-arterial therapy. Stroke. 2013 (44): 62-66.

21.   Davalos A., Pereira V.M., Chapot R. et al. Retrospective multicenter study of Solitaire FR for revascularization in the treatment of acute ischemic stroke. Stroke. 2012 (43): 2699-2705.

22.   Humphries W., Hoit D., Doss V.T., et al. Distal aspiration with retrievable stent assisted thrombectomy for the treatment of acute ischemic stroke. J. NeuroIntervent. Surg. 2015 (7): 90-94.

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы