Website is intended for physicians
Search:
Всего найдено: 2

 

Abstract:

Aim: was to systematize and clarify possible puncture approaches in percutaneous CT-guided mini-invasive procedures in patients with tumor lesions of pelvic bones.

Methods and materials: 63 CT-guided interventions were performed on pelvic bones (53 trephine biopsy and 10 cryoablations) in 52 patients. Manipulations were performed using the Philips Ingenuity CT scanner, Maxio Perfint robotic system and «Medical Cryotherapeutic System».

Results: during interventional procedures, three topographic regions were identified - zones of the pelvic ring: upper zone (at the level of the ilium), middle zone (level of the articular space of the hip joint), and lower zone (at the level of the ramus of the ischial and pubic bones). In each zone, within certain safety sectors, puncture approaches are highlighted, associated with five optimal positions of the patient in the gantry aperture. Clinical examples of puncture procedures with various localization of the pathological process are given, demonstrating the safety of approaches and the validity of proposed recommendations. There were no complications after interventions.

Conclusion: the choice of the optimal puncture approach and standard patient’ positions in miniinvasive CT-guided operations in patients with pelvic bone lesions can improve the efficiency and safety of surgical procedures.

  

 

References 

1.     Garnon J, Koch G, Caudrelier J, et al. Expanding the borders: Image-guided procedures for the treatment of musculoskeletal tumors. Diagnostic and Interventional Imaging. 2017; 98(9): 635-644.

2.     Sun G, Jin P, Liu XW, et al. Cementoplasty for managing painful bone metastases outside the spine. European Radiology. 2014; 24(3): 731-737.

3.     Burovik IA, Prokhorov GG, Lushina PA, et al. CT-guided robotic-assisted percutaneous interventions: first experience. Medical Visualization. 2019; (2): 27-35 [In Russ].

4.     Lin YC, Wu JS, Kung JW. Image guided biopsy of musculoskeletal lesions with low diagnostic yield. Current Medical Imaging Reviews. 2017; 13(3): 260-267.

5.     Miranda OM, Moser TP. A practical guide for planning pelvic bone percutaneous interventions (biopsy, tumour ablation and cementoplasty). Insights into Imaging. 2018; 9: 275-285.

6.     Coleman RE, Croucher PI, Padhani AR, et al. Bone metastases. Nature Reviews Disease Primers. 2020; 6: 83.

7.     Filippiadis DK, Charalampopoulos G, Mazioti A, et al. Bone and Soft-Tissue Biopsies: What You Need to Know. Seminars in Interventional Radiology. 2018; 35(4): 215-220.

8.     Veltri A, Bargellini I, Giorgi L, et al. CIRSE guidelines on percutaneous needle biopsy (PNB). CardioVascular and Interventional Radiology. 2017; 40(10): 1501-1513.

9.     Meagan C, Keegan BA, Darcy AK. Fine-needle aspiration biopsy for the diagnosis of bone and soft tissue lesions: a systematic review and meta-analysis. Journal of the American Society of Cytopathology. 2020; 9(5): 429-441.

10.   Barrientos-Ruiz I, Ortiz-Cruz EJ, Serrano-Montilla J, et al. Are Biopsy Tracts a Concern for Seeding and Local Recurrence in Sarcomas? Clinical Orthopaedics and Related Research. 2017; 475(2): 511-518.

11.   Burovik IA, Prokhorov GG. Computed tomography as a method of control of percutaneous tumor cryoablation. Diagnostic radiology and radiotherapy. 2019; (4): 57-65 [In Russ].

 

Abstract:

Aim: was to analyze domestic and foreign literature sources, reflecting the possibility of applying local ablation methods of focal liver tumors.

Material and methods: article presents an analysis of domestic and foreign 37 publications containing information on the use of methods of local ablation of nodular pathology of liver, deposited in resources of PubMed and information portal eLIBRARY.RU.

Results: most important aspects of performing of methods of chemical, cryo-, microwave, and radiofrequency ablations, used in treatment of local liver tumors were presented.

Conclusion: analysis of various publications on methods of local destruction of tumors does not give a clear answer to the question of which method is preferred, however, article describes each of ablation methods, highlighting positive and negative aspects of their effect on lesions of the liver. The question of the inclusion of minimally invasive methods in schemes of combined and complex antitumor therapy for focal liver lesions also remains open.

Modern approaches and improving techniques of treatment of liver malignancies, expand indications for the use of minimally invasive techniques. Competent selection of patients, selection of the optimal method of local ablation of tumor and subsequent dynamic monitoring of patients reduce the number of relapses, increase the percentage of overall survival of patients and improve their quality of life.

  

References

1.     Truty MJ, Vauthey J-N. Surgical resection of highrisk hepatocellular carcinoma: patient selection, preoperative considerations, and operative technique. Ann. Surg. Oncol. 2010; 17: 1219-1225.

2.     Gillams AR. Radiofrequency ablation in the management of liver tumors. Eur. J. Surg. Oncol. 2003; 29(1): 9-16.

3.     Patjutko JuI, Chuchuev ES, Podluzhnyj DV, et al. Surgical tactics in treatment of colorectal cancer patients with synchronous liver metastases. Onkologicheskaja koloproktologija. 2011; 2: 13-19. [In Russ].

4.     Liu LX, Zhang WH, Jiang HC. Current treatment for liver metastases from colorectal cancer. World J. Gastroenterol. 2003; 9: 193-200.

5.     Patjutko JuI, Sagajdak IV. Indications and contraindications for liver resections in case of metastases of colorectal cancer. The value of prognostic factors and their classification. Ann. Hir. Gepatol. 2003; 8(1): 110-118 [In Russ].

6.     Granov DA, Tarazov PG. Endovascular interventions in treatment of malignant tumors of the liver. SPb. Foliant. 2002; 287 [In Russ].

7.     Verjasova NN. Treatment of malignant tumors of the liver with the use of local injection therapy with ethanol. CNIIRI. SPb. Avtoreferat. 2002; 6-8 [In Russ].

8.     Sugiura Y, Nakamura S, Iida S, et. al. Extensive resection of the bile ducts combined with liver resection for cancer of the main hepatic duct junction: A cooperative study of the Keio Bile Duct Cancer Study Group. Surgery. 1994; 15(4): 445-451.

9.     Elgindy N, Lindholm H, Gunvйn P. High dose percutaneous ethanol injection therapy of liver tumors: patient acceptance and complications. Acta Radiologica. 2000; (5): 458-463.

10.   Shaposhnikov AV, Bordshkov JuN, Nepomnjashhaja EM, at al. Local therapy of unresectable liver tumors. Ann. Hir. Gepatol. 2004; 9(1): 89-94 [In Russ].

11.   Siperstein AE, Berber E. Cryoablation, Percutaneous Alcohol Injection, and Radiofrequency Ablation for Treatment of Neuroendocrine Liver Metastases. World. J. Surg. 2001; (25): 693-696.

12.   Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer. 2014; 3: 199-208.

13.   Adam R, Akpinar E, Johann M, et al. Place of cryosurgery in the treatment of malignant liver tumors. Ann Surg. 1997; 225: 239–250.

14.   Mala T. Cryoablation of colorectal liver metastases: minimally invasive tumor control. Scand. J. Gastroenter. 2004; 39: 571-578.

15.   Samojlov VA, Saljukov JuL, Gladenko AA, et al. Experience in the use of cryodestruction in treatment of metastatic liver cancer. Ann. Hir. Gepatol. 1998; 3: 326 [In Russ].

16.   Seifert JK, Junginger T, Morris DL. A collective review of the world literature on hepatic cryotherapy. J.R. Coll. Surg. Edinb. 1998; 43: 141-154.

17.   Erinjeri JP, Clark TW. Cryoablation: mechanism of action and devices. J Vasc Interv Radiol. 2010; 21: 187-191.

18.   Ahmed M, Brace CL, Lee FT, at al. Principles of and advances in percutaneous ablation. Radiology. 2011; 258(2): 351-369.

19.   Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer. 2014; 14(3): 199-208.

20.   Starkov JuG, Shishin KV. Cryosurgery of focal liver lesions. Hirurgija. 2000; 7: 53-59 [In Russ].

21.   Hinshaw JL, Lubner MG, Ziemlewicz TJ, et al. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation – what should you use and why? Radiographics. 2014; 34(5): 1344-1362.

22.   Ravikumar TS, Kane R, Cady B, et al. A 5-year study of cryosurgeryin the treatment of liver tumors. Arc. Hir. Surg. 1991; 125: 1520-1524.

23.   Crews KA, Kuhn JA, McCarty TM, et al. Cryosurgical ablation of hepatic tumors. Am. J. Surg. 1997; 174: 614-617.

24.   Lubner MG, Brace CL, Hinshaw JL et al. Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 2010; 21: 192-203.

25.   Lencioni R, de Baere T, Martin RC, at al. Imageguided ablation of malignant liver tumors: recommendations for clinical validation of novel thermal and non-thermal technologies - a western perspective. Liver Cancer. 2015; (4): 208–214.

26.   Mayo SC, Pawlik TM. Thermal ablative therapies for secondary hepatic malignancies. Cancer J. 2010; 16 (2): 111-117.

27.   Scudamore CH, Patterson EJ, Shapiro AM, et al. Liver tumor ablation techniques. J. Invest. Surg. 1997; 4: 157-64.

28.   Brace C. Thermal tumor ablation in clinical use. IEEE Pulse. 2011; (5):28-38.

29.   Iannitti DA, Martin RC, Simon CJ, et al. Hepatic tumor ablation with clustered microwave antennae. The US Phase II trial. HPB (Oxford). 2007; 9(2): 120.

30.   Rossi S, Carbagnati P, Rosa L, et al. Laparoscopic radio frequency thermal ablation for treatment of hepatocelluar carcinoma. Int. J. Clin. Oncol. 2002; 225-235.

31.   Zivin SP, Gaba RC. Technical and practical considerations for device selection in locoregional ablative therapy. Semin. Intervent. Radiol. 2014: 31(2): 212-24.

32.   Mehta A, Oklu R, Sheth RA. Thermal ablative therapies and immune checkpoint modulation: can locoregional approaches effect a systemic response? Gastroenterology Research and Practice. 2016; 9251375: 11.

33.   Sidana A. Cancer immunotherapy using tumor cryoablation. Immunotherapy. 2014; 6(1): 85-93.

34.   Dolgushin BI, Patjutko JuI, Sholohov VN, et al. Radiofrequency thermal ablation of liver tumors. Edited by MI Davydov. Prakticheskaja medicina. 2007; 192 [In Russ].

35.   Fedorov VD, Vishnevskij VA, Kornjak BS, at al. Radiofrequency ablation of malignant tumors of the liver (literature review). Hirurgija. 2003; 10: 77-80 [In Russ].

36.   Machi J, Oishi AJ, Mossing AJ, Furumoto NL, Oishi RH. Hand-assisted laparoscopic ultrasound-guided radiofrequency thermal ablation of liver tumors: a technical report. Surg Laparosc Endosc Percutan Tech. 2002; 12:160–164.

37.   Gilliams AR, Lees WR. CT mapping of the distribution of saline during radiofrequency ablation with perfusion electrodes. Cardiovasc Intervent Radiol. 2005; 476-480.

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы