Website is intended for physicians
Search:
Всего найдено: 5

 

Abstract:

Lesions of the LCA stem are found in 2,5-4 % of patients with coronary heart disease who endured coronography, and are accompanied by more severe symptomatology, higher morbidity and mortality rates, and difficulty of radical correction. According to the generally accepted guidelines, the operation of coronary artery bypass has up to now been a method of choice in treatment of the LCA stem. Nevertheless, endovascular methods of treatment for LCA stem lesions have relatively long been used, while implementation into clinical practice of drug-eluding stents has considerably improved the remote outcomes, which made it possible to consider LCA stem stenting as a real alternative to ACB. Hence, the problem concerning indications for and contraindications to LCA stem stenting remains unsolved today. We retrospectively analysed a total of 75 endovascular interventions on the LCA stem in 67 patients, with an isolated lesion of the LCA stem being found only in 7,4 % of the patients. The remaining subjects had lesions of the LCA stem on the background of a multivascular lesion of the coronary bed, including occlusion of the RCA observed in 16,4 % of cases. Successive revascularization was performed in 98,64 % of cases, with no lethal outcomes. One patient required urgent ACB due to development of occluding dissection of the circumflex branch. Complications in the immediate postoperative period were observed in two patients and were represented by non-Q myocardial infarction and stroke. LCA stem stenting proved an efficient and safe method of treatment for coronary heart disease. A comparative analysis of the immediate results of LCA stem stenting and ACB revealed advantages of stenting, consisting in no lethal outcomes (in our series) and a lower short-term rate of postoperative complications.

  

Reference

1.     Cohen МУ Cohn PF, Herman MV, Gorlin R. Diagnosis and prognosis of main left coronary artery obstructtion. Circulation 1972; 45 (Suppl 1): 57 - 65.

2.     Gruentzig A.R. Transluminal dilatation of coronary artery stenosis. Lancet 1978; 1: 263.

3.     O'Keefe JH, Harztler GO, Rutherford BD, et al. Left main coronary angioplasty: early and late results of 127 acute and elective procedures. Am. J. Cardiol. 1989; 64: 144 - 147.

4.     Seung-Jung Park, MD, PHD, Young-Hak Kim, MD, Bong-Ki Lee, MD et al. Sirolimus-Eluting Stent Implantation for Unprotected Left Main Coronary Artery Stenosis Comparison With Bare Metal Stent Implantation. Journal of the American College of Cardiology. 2005; 3 (45): 351-6.

5.     Seung-Jung Park, Young-Hak Kim, Bong-Ki Lee, Seung-Whan Lee, Cheol Whan Lee, Myeong-Ki Hong, Jae-Joong Kim, Gary S. Mintz, MD, Seong-Wook Park. Sirolimus-Eluting Stent Implantation for Unprotected Left Main Coronary Artery Stenosis. J. Am. Coll. Cardiol. 2005; 45: 351-6.

6.     Colombo A, Moses JW, Morice MC, et al. Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation. 2004; 109: 1244-9.

7.     Arampatzis CA, Hoye A, Saia F, et al. Elective sirolimus-eluting stent implantation for left main coronary artery disease: six-month angiographic follow-up and 1-year clinical outcome. Cathet. Cardiovasc. Interv. 2004; 62: 292 - 6.

8.     Joseph P. Ornato, Richard L. Page, Barbara Riegel etal. A Report of the American College of ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary. Circulation. 2006; 113: 156 - 175.

9.     Caracciolo EA, Davis KB, Sopko G, Kaiser GC et al. Comparison of surgical and medical group survival in patients with left main equivalent coronary artery disease: Long-term CASS experience. Circulation. 1995; 91: 2335-44.

10.   Yusuf S, Zucker D, Peduzzi P, et al. Effect of coronary bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet. 1994; 344: 563 - 570.

11.   Park S, Hong M, Lee CW, et al. Elective stenting of unprotected left main coronary artery stenosis: effect of debulking before stenting and intravascular ultrasound guidance. J. Am. Coll. Cardiol. 2001; 38: 1054 - 1060.

12.   TakagiT, Stankovic G, Finci L, Toutouzas K, Chieffo A, Spanos У Liis-tro F, Briguori C, Corvaja N, Albero R, Sivieri G, Paloschi R, Di Mario C, Colombo A. Results and long-term predictors of adverse clinical events after elective percutaneous interventions on unprotected left main coronary artery. Circulation. 2002; 106: 698 - 702.

13.   Sorin J. Brener, MD; Bruce W Lytle, MD; Ivan P. Casserly, MD; Jakob P. Schneider, RN; Eric J. Topol, MD; Michael S. Lauer, MD. Propensity Analysis of Long-Term Survival After Surgical or Percutaneous Revascularization in Patients With Multivessel Coronary Artery Disease and High-Risk Features. Circulation. 2004; 109: 2290 -2295.

14.   Silvestri M, LefПvre T, Labrunie P, Khalife K, Bayet G, Morice MC, Bedossa M, Chmait A.. On behalf of the FLM registry investigators. The French registry of left main coronary artery treatment: Preliminary results. J. Am. Coll. Cardiol. 2003; 41: 45.

15.   Brigouri C, Sarais C, Pagnotta P, Airoldi F, et al. Elective versus provisional pumping in high-risk percutaneus transluminal coronary angioplasty. Am. Heart J. 2003; 145 (4): 700 - 7.

16.   Бокерия Л. А., Алекян Б. Г., Бузиашвили Ю. И. и др

 

 

Abstract:

We had analyzed percutaneous coronary intervention (PCI) of non-standard complications - coronary artery dissection with extension on the eft main coronary artery (LMCA) and aorta. There was the coronary dissection of LMCA and aorta after left internal thoracic arteries and left anterior descending anastomosis (LIMA-LAD) balloon predilatation. Satisfactory angiographic result was achieved with blood flow TIMI III after stent implantation. In connection with the stable condition of the patient there was no endovascular or surgical treatment. The patient had stable hemodynamics in hospital period. The angiografic control was performed after 8 days. There was no coronary and aorta dissection and stent-thrombosis.

In conclusion in can be said that conservative tactics may be useful in a case of retrograde coronary and aorta dissection after LIMA-LAD stent mplantation.

 

References 

1.    Geraci A.R. Krishnaswami V., Selman M.W. Aorto-coronary dissection complicating coronary arteriography. J. Thorac. Cardiovasc. 2 Surg. 1973; 65: 695-698.

2.    Alfonso F. et al. Aortic dissection occurring during coronary angioplasty. Angiographic and transesophageal echocardiographic findings. Cathet. Cardiovasc. Diagn. 1997; 42: 412-415.

3.    Roberts W.C. Aortic dissection. Anatomy, consequences and causes. Am. Heart. J. 1981;101: 195-214.

4.    Erbel R. et al. Task Force on aortic dissection. European society of cardiology. Diagnosis and management of aortic dissection. Europ. Heart. J. 2001; 22: 1642-1681.

5.    Cigarroa J.E. et al. Diagnostic imaging in the evaluation of suspected aortic dissection. Old standards and new directions. N. Engl. J. Med. 1993; 328: 35-43.

6.    Kwan T. et al. Combined dissection of right coronary artery and right coronary cusp during coronary angioplasty. Cathet. Cardiovasc. Diagn. 1995; 35: 328-330.

7.    Perez-Castellano N. et al. Dissection of the        aortic sinus of Valsalva complicating coronary catheterization. Cause, mechanism, evolution, and management. Cathet. Cardiovasc. Diagn. 1998; 43: 273-279.

8.    Varma V. et al. Transesophageal echocardiographic demonstration of proximal right coronary artery dissection extending into the aortic root. Am. J. Cardiol. 1992; 123: 1055-1057.

9.    Hearne S.E. et al. Internal mammary artery graft angioplasty. Acute and long-term outcome. Cathet. Cardiovasc. Diagn. 1998; 44: 153-156.

10.  Wei-Chin Hung et al. LIMA graft interventions. Chang. Gung. Med. J.2007; 30 (3): 235-241

11.  Moussa I. et al. Effectiveness of clopidogrel and aspirin versus ticlopidine and aspirin in preventing stent thrombosis after coronary stent implantation. Circulation. 1999; 99:

 

 

Abstract:

Importance: despite generally promising outcomes after stenting for unprotected left main coronary artery (ULMCA) disease, the ULMCA bifurcation lesions remain challenging, and their restenosis rate is still relatively high.

Objective: aim of the current study was to analyze possible factors influencing one year MACE rate in distal ULMCA patients.

Design, setting and patients: from year 2002 until end of year 2011 at Latvian Centre of Cardiology Pauls Stradins Clinical University hospital in ULMCA registry 1052 patients were enrolled. Interventions: In 723 patients distal bifurcations were treated, out of them in 449 patients one year follow-up were completed and those patients were included in current analyses Main outcome measures: cardiac death, target vessel revascularization (TVR), target lesion revascularization (TLR), major cardiac adverse events (MACE) were assessed at one year.

Results: two stent technique was used in 8,5% of cases. MACE, cardiac death, TVR and TLR rates at one year was 15,6%, 2,9%, 4,7% and 12,9%, respectively Cardiac death was associated with diabetes mellitus and NSTEMI, however, TLR was associated with SYNTAX score >30. MACE was associated with NSTEMI and 2 stent technique. True bifurcation was not associated with adverse cardiovascular outcomes.

Conclusions: Use of two stent technique and NSTEMI at presentation were associated of MACE at one year in distal ULMCA patients. 

 

References

1.     Tan W.A., Tamai H., Park S.J. et al. Long-term clinical outcomes after unprotected left main trunk percutaneous revascularization in 279 patients. Circulation. 2001; 104(14):1609-14.

2.     Wijns W., Kolh P, Danchin N. et al. Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2010;31 (20):2501-55.

3.     Chieffo A., Stankovic G., Bonizzoni E. et al. Early and mid-term results of drug-eluting stent implantation in unprotected left main. Circulation. 2005;111(6):791-5.

4.     Kim YH., Dangas G.D., Solinas E. et al. Effectiveness of drug-eluting stent implantation for patients with unprotected left main coronary artery stenosis. Am. J. Cardiol. 2008;101(6):801-6.

5.     Meliga E., Garcia-Garcia H.M., Valgimigli M. et al. Longest available clinical outcomes after drug-eluting stent implantation for unprotected left main coronary artery disease: the DELFT (Drug Eluting stent for LeFT main) Registry. J. Am. Coll. Cardiol. 2008;51(23):22 12-9.

6.     Palmerini T., Marzocchi A., Marrozzini C. et al. Preprocedural levels of C-reactive protein and leukocyte counts predict 9-month mortality after coronary angioplasty for the treatment of unprotected left main coronary artery stenosis. Circulation. 2005;112(15):2332-8.

7.     Park S.J., Kim YH., Lee B.K. et al. Sirolimus-eluting stent implantation for unprotected left main coronary artery stenosis: comparison with bare metal stent implantation. J. Am. Coll.Cardiol. 2005; 45(3):351-6.

8.     Seung K.B., Park D.W., Kim YH., et al. Stents versus coronary-artery bypass grafting for left main coronary artery disease. N. Engl. J. Med. 2008; 358(17):1781-92.

9.     Chieffo A., Park S.J., Valgimigli M. et al. Favorable long-term outcome after drug-eluting stent implantation in nonbifurcation lesions that involve unprotected left main coronary artery: a multicenter registry. Circulation. 2007;116(2):158-62.

10.   Colombo A., Moses J.W., Morice M.C. et al. Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation. 2004; 109(10):1244-9.

11.   Serruys P.W., Morice M.C., Kappetein A.P et al. ТЬю SYNTAX Investigators. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 2009;360:961-972.

12.   Medina A., Suarez de Lezo J., Pan M. A new classification of coronary bifurcation lesions. Rev Esp. Cardiol. 2006;59:183.

13.   Toyofuku M., Kimura T., Morimoto T., et al. J-Cypher Registry Investigators. Three-year outcomes after sirolimus-eluting stent implantation for unprotected left main coronary artery disease: insights from the j-Cypher registry. Circulation. 2009;120(19):1866-74.

14.   Palmerini T., Sangiorgi D., Marzocchi A. et al. Ostial and midshaft lesions vs. bifurcation lesions in 1111 patients with unprotected left main coronary artery stenosis treated with drug-eluting stents: results of the survey from the Italian Society of Invasive Cardiology. Eur. Heart J. 2009;30(17):2087-94.

15.   Valgimigli M., Malagutti P, Rodriguez-Granillo G.A. et al. Distal Left Main Coronary Disease Is a Major Predictor of Outcome in Patients Undergoing Percutaneous Intervention in the Drug-Eluting Stent Era. J. Am. Coll. Cardiol. 2006;47:1530-7.

16.   Tamburino C., Capranzano P, Capodanno D. et al. Plaque Distribution Patterns in Distal Left Main Coronary Artery to Predict Outcomes After Stent Implantation. JACC Cardiovascular Interventions. 2010; 3(6) 624-631.

17.   Goldberg S., Grossman W. Markis J.E., Cohen M.V., Baltaxe H.A., Levin D.C. Total occlusion of the left main coronary artery. A clinical, hemodynamic and angiographic profile. Am. J. Med. 1978;64(1):3-8.

18.   Spiecker M., Erbel R., Rupprecht H.J., Meyer J. Emergency angioplasty of totally occluded left main coronary artery in acute myocardial infarction and unstable angina pectoris-institutional experience and literature review. Eur. Heart J. 1994;15(5):602-7.

19.   De Feyter P.J., Serruys P.W. Thrombolysis of acute total occlusion of the left main coronary artery in evolving myocardial infarction. Am. J. Cardiol. 1984;53(11):1727-8.

20.   Quigley R.L., Milano C.A., Smith L.R., White W.D., Rankin J.S., Glower D.D. Prognosis and management of anterolateral myocardial infarction in patients with severe left main disease and cardiogenic shock. The left main shock syndrome. Circulation. 1993;88(5):II65-70.

21.   Nagaoka H., Ohnuki M., Hirooka K., Shimoyama T. [Emergency coronary artery bypass grafting for left main coronary artery disease]. Kyobu Geka. 1999;52 (8 Suppl):634-8.

22.   Meliga E., Garcia-Garcia H.M., Valgimigli M. et al. Diabetic patients treated for unprotected left main coronary artery disease with drug eluting stents: a 3-year clinical outcome study. The diabetes and drug eluting stent for LeFT main registry (D-DELFT). Eurolntervention. 2008; 4(1):77-83. 

 

 

Abstract:

Aim: was to show capabilities of MDCT-angiography of coronary arteries in the detection and characterization of rare forms of anomalous coronary arteries from the pulmonary artery in adult patients

Materials and methods: we made retrospective study of anomalous coronary arteries from pulmonary arteries in patients who have been examined and operated in our Center for the period of 2008-2013. All patients on admission underwent: echocardiography, selective coronary angiography and MDCT coronarography Postoperatively - echocardiography and MDCT coronarography.

Results: for the period of 5 years about 30,000 patients underwent examination in our center, and congenital anomalous coronary arteries from the pulmonary artery was identified only in 6(0,02 %) cases. 4( 0,013%) of them had «infantile» type - ALCAPA. In adults, anomalous coronary arteries from the pulmonary artery revealed in 2 cases: a 31 year woman had «adult» type ALCAPA (0,003%) and 17-year boy - isolated form ARCAPA (0,003%). Preoperative MDCT provided direct visualization of anomalous coronary arteries from the pulmonary artery, displayed the spatial relationship of coronary vessels in the three-dimensional image that helped to clarify and demonstrate for cardiac surgeons individual characteristics of congenital disorder. Marked dilatation and tortuous course of trunks and branches of coronary arteries, the severity of which declined after surgical correction. Adult patients successfully underwent surgical correction: reimplantation of anomalous coronary arteries in orthotopic position in cardiopulmonary bypass with the creation of two-coronary blood supply of the heart

Conclusions: Even in cases where a definitive diagnosis of anomalous coronary arteries from the pulmonary artery can be diagnosed by echocardiography and coronary angiography, before surgery is recommended to perform MDCT angiography to clarify the anatomy and more specific spatial representation of the topography of the anomalous vessel. In the late postoperative period this method allows to assess in details the condition of coronary flow and effectiveness of coronary intervention. 

 

References

1.     Angelini P. Normal and anomalous coronary arteries: definitions and classification. Am. Heart J. 1989; 117: 418-434.

2.     Maron B.J. Triggers for sudden cardiac death in the athlete. Cardiol. Clin. 1996; 14: 195-210.

3.     Corrado D., Basso C., Rizzoli G., et al. Does sports activity enhance the risk of sudden death in adolescents and young adults? J. Am. Coll. Cardiol. 2003; 42: 1959-1963.

4.     Jakobs T., Becker C., Ohnesorge B., et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur. Radiol. 2002; 12: 1081-1087.

5.     Wollenek G., Domanig E., Salzer-Muar U., et al. Anomalous origin of the left coronary artery: a review of surgical management in 13 patients. J. Cardiovasc. Surg. 1993; 34: 399-405.

6.     Jurishica A.J. Anomalous left coronary artery; adult type. Am. Heart J. 1957; 54: 429-436.

7.     Kawara T., Tayama E., Hayashida N., et al. Anomalous Origin of the Left Coronary Artery from the Pulmonary Artery: Successful Direct Reimplantation in a 50-year-old Man. Ann.Thorac Cardiovasc Surg. 2003, 9 (3): 197-201.

8.     Williams I.A., Gersony W.M., Hellenbrand W.E. Anomalous right coronary artery arising from the pulmonary artery: a report of 7 cases and a review of the literature. Am. Heart J. 2006; 152(5): 1004-1017.

9.     Maroules C.D., Adams D.Z., Whiting E.D., et al. Anomalous Origin of the Right Coronary Artery from the Pulmonary Artery Evaluation with Use of 64-Slice Multidetector Computed Tomography. Texas Heart Institute Journal. 2013; 40(1): 93-99.

10.   Burakovskij V.I., Sharykin A.S., Garibjan V.A. Anomal'noe othozhdenie pravoj koronarnoj arterii ot legochnoj arterii v sochetanii s defektom mezhzheludochkovoj peregorodki [Anomalous right coronary artery from the pulmonary artery in conjunction with a ventricular septal defect.]. Grudnaja hirurgija. 1981; 2: 1-10 [In Russ].

11.   Burakovskij V.I., Podlozkov V.P., Ragimov F.R. Diagnostika i hirurgicheskoe lechenie defektov aortolegochnoj peregorodki, sochetajushhihsja s drugimi vrozhdennymi porokami serdca [Diagnosis and surgical treatment of defects aorto-pulmonary septum, combined with other congenital heart defects.]. Grudnaja hirurgija. 1982; 6: 13-21 [In Russ].

12.   Kacitadze Z.D. Rezul'taty hirurgicheskogo lechenija anomaij othozhdenija koronarnyh arterij ot legochnoj arterii. Avtoreferat. Diss. kand. med. Nauk [Results of surgical treatment of coronary artery anomalies of divergence from the pulmonary artery.]. M.1998; 28 [In Russ].

13.   Modi H., Ariyachaipanich A., Dia M. Anomalous origin of right coronary artery from pulmonary artery and severe mitral regurgitation due to myxomatous mitral calve disease: a case report and literature review. Journal of Invasive Cardiology. 2010; 2(4): 49-55.

14.   Yao C.T., Wang J.N., Yeh C.N., et al. Isolated anomalous origin of right coronary artery from the main pulmonary artery. Journal of Cardiac Surgery. 2005; 20(5): 487-489.

15.   Angelini P. Coronary artery anomalies-current clinical issues: definitions, classification, incidence, clinical relevance, and treatment guidelines. Tex. Heart Inst. J. 2002; 29: 271-278.

16.   Abbott M.E. Congenital Cardiac disease. Modern Medicine. Philadelphia. 1908.

17.   Abrikossoff A. Aneurysma des linken Herzventrikels mit abnormer Abgangsstelle der linken Koronararterie von der Pulmonalis bei einem funsonatlichen Kinde. Virchows Arch. Pathol. Anat. 1911; 203: 413.

18.   Keith J.D. Diseases of coronary arteries and aorta. in: Keith J.D., Rowe R.D., Vlad P., editors. General cardiac disease. 3rd ed. New York; Macmillan Publishing Co. Inc; 1978.

19.   Bland E.F., White P.D., Garland J. Congenital anomalies of the coronary arteries: report of an unusual case associated with cardiac hypertrophy. Am. Heart J. 1933; 8: 787-801.

20.   Emmanouilides G.C., Riemenschneider T.A., Allen

H.    D., Gutgesell H.P Heart disease in infants, children, and adolescents. 5th edition. Williams and Wilkins (Publishers) Ltd, Baltimore 1995; 776-779.

21.   DeLeval M.R., Yacoub M., Georgakopoulos D.I., et al. Bland-White-Garland Syndrome: Definitive echocardiographic diagnosis of a surgical treatable form of dilatative cardiomyopathy. Hell. J. Cardiol. 1991; 32: 22.

22.   Frescura C., Basso C., Thiene G., et al. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum. Pathol. 1998; 29: 689-695.

23.   Yau J.M., Singh R., Halpern E.J., Fischman D. Anomalous origin of the left coronary artery from the pulmonary artery in adults: a comprehensive review of 151 adult cases and a new diagnosis in a 53-year-old woman. Clin. Cardiol. 2011; 34: 204-210.

24.   Dodge-Khatami A., Mavroudis C., Backer C.L. Anomalous origin of the left coronary artery from the pulmonary artery: collective review of surgical therapy. Ann. Thorac. Surg. 2002; 74: 946-955.

25.   Brooks H.S.J. Two cases of an abnormal coronary artery of the heart arising from the pulmonary artery: with some remarks upon the effect of this anomaly in producing cirsoid dilatation of the vessels. J. Anat. Physiol. 1885; 20(Pt 1): 26-29.

26.   Mollet N.R., Cademartiri F., van Mieghem C.A., et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005; 112 (5): 2318-2323.

27.   Menahem S., Venables A.W., Anomalous left coronary artery from the pulmonary artery: a 15 year sample. Br. Heart J. 1987; 58: 78-84.

28.   Montaudon M., Latrabe V., Iriart X., et al. Congenital coronary arteries anomalies: Review of the literature and multidetector computed tomography (MDCT)-appearance. Surg. Radiol. Anat. 2007; 29: 343-355.

29.   Brijesh P, Kottayil M., Karunakaran J. et al. Anomalous Origin of Left Coronary Artery From Pulmonary Artery in Older Children and Adults: Direct Aortic Implantation. Ann. Thorac. Surg. 2011; 91: 549-553.

30.   Johnsrude C.L., Perry J.C., Cecchin F. Differentiating anomalous left coronary artery originating from the pulmonary artery in infants from myocarditis and dilated cardiomyopathy by electrocardiogram. Am. J. Cardiol. 1995; 75: 71-79.

31.   King D.H., Danford D.A., Huhta J.C., Gutgesell H.P Noninvasive detection of anomalous origin of the left main coronary from the pulmonary trunk by pulsed Doppler echocardiography. Am.J. Cardiol. 1985; 55: 608-717.

32.   Frommelt M.A., Miller E., Williamson J., Bergstrom S. Detection of septal coronary collaterals by color flow Doppler mapping is a marker for anomalous origin of a coronary artery from the pulmonary artery. J. Am. Soc. Echocardiogr. 2002; 15(3): 259-263.

33.   Schmidt K.G., Cooper M.J., SilvermanN.H., Stanger P Pulmonary artery origin of the left coronary artery: Diagnosis by two-dimensional echocardiography, pulsed Doppler ultrasound and colour flow mapping. J. Am. Coll. Cardiol. 1988; 11: 396-402.

34.   Tavakol M., Ashraf S., Brener S.J. Risks and Complications of Coronary Angiography: A Comprehensive Review. Global Journal of Health Science. 2012; 4(1): 65-93.

35.   Ternovoj S.K., Nikonova M. Je., Akchurin R.S., i dr. Vozmozhnosti mul'tispiral'noj komp'juternoj tomografii (MSKT) v ocenke koronarnogo rusla i ventrikulografii v sravnenii intervencionnoj koronaroventrikulografiej [Possibilities of MDCT in the evaluation of coronary disease and ventriculography in comparison intrvention coronaro ventriculography.]. REJR. 2013; 3(1): 28-35 [InRuss].

36.   Fine J.J., Hopkins C.B., Ruff N., et al. Comparison of accuracy of 64-slice cardiovascular computed tomography with coronary angiography in patients with suspected coronary artery disease. Am. J. Cardiol. 2006; 97: 173-174.

37.   Leschka S., Alkadhi H., Plass A., et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur. Heart J. 2005; 26: 1482-1487.

38.   de Jonge G.J., van Ooijen PM., Piers L.H., et al. Visualization of anomalous coronary arteries on dualsource computed tomography. Eur. Radiol. 2008; 18: 2425-243

39.   Nambi P, Sengupta R., Cheong B.Y Multislice computed tomography of a repaired anomalous left coronary artery arising from the pulmonary artery. Tex. Heart. Inst. J. 2008; 35: 485-486.

40.   Su C.S., Tsai I.C., Lin W.W., et al. Usefulness of multidetector-row computed tomography in diagnosis of anomalous origin of left coronary artery arising from the pulmonary artery. J. Chin.Med. Assoc. 2010; 73: 492-495.

41.   Schmitt R., Froehner S., Brunn J., et al. Congenital anomalies of the coronary arteries: imaging with contrastenhanced, multidetector computed tomography. Eur. Radiol. 2005; 15(6): 1110-1121. 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы