Website is intended for physicians
Search:
Всего найдено: 6

 

Abstract:

Introduction: the role of intracerebral stenosis of brain arteries in the development of postoperative strokes in patients with extensive atherosclerosis remains unresolved, and in clinical practice, magnetic resonance angiography (MRA) of cerebral arteries is not carried out routinely to predict the risk of postoperative cerebrovascular disorders.

Aim: was to identify factors of MRA of intracerebral arteries essential for prognosis of ischemic strokes in postoperative period of angiosurgical interventions and in acute period of myocardial infarction (AMI), from the quantitative processing of brain MRA recruited from the MRI — MRA register.

Materials and methods: results of brain MRA of 195 patients with extensive atherosclerosis carried out before cardio- or angiosurgical interventions were analyzed. Of these, three had an ischemic stroke after carotid endarterectomy, three — after CABG operations, and five — after surgical treatment of thoracic aortic aneurysms, on 2-5 day after surgery. We also studied results of brain MRA in five patients who developed an episode of ischemic brain stroke in the acute period of acute myocardial infarction. In all cases of circulatory disorders were localized in the region of middle cerebral artery (MCA). Everyone was given a time-of-flight MRA with reconstruction of three-dimensional anatomical picture of cerebral arteries. The index of gradient of narrowing of arterial lumen (GNL) of artery was calculated as the ratio of the difference in the area of artery at stenosis and at nearest proximal non-stenosed level, to the distance between them, along the course of the vessel: GNL={(Snorm–Sstenosis)/Dnorm–stenosis}, mm2/mm.

Results: analyzing the visual picture of brain MRA in patients, the sign of critical narrowing of MCA for >50% was observed in all five patients with acute ischemic stroke concomitant with acute myocardial infarction. In all 11 patients who developed postoperative stroke, the visual picture of MCA stenosis was bilateral, more pronounced on the side of the ischemic disorder after the operation. When using the GNL index, it was obvious that ischemic stroke developed only when the stenosis was more sharp than GSP >1,05 mm2/mm. Of five patients who showed signs of MCA stenosis but did not have postoperative stroke, four took doses of 250 mg/day or more of ethylmethylhydroxypyridine succinate (mexidol) for more than a month at the outpatient stage. The sensitivity of MRA preoperative sign of MCA stenosis in relation to postoperative ischemic stroke was 100% in all groups, the specificity and diagnostic accuracy was 97,5%, the predictability of a positive conclusion was 62,5-75%, and the predictability of a negative conclusion was 97-99%.

Conclusion: technology for evaluating the gradient of narrowing of arterial lumen in the area of atherosclerotic stenosis of intracerebral arteries in patients with extensive atherosclerosis allows predicting the risk of postoperative stroke. Gradient of narrowing of arterial lumen index for atherosclerotic middle cerebral artery over 1,05 mm2/mm in patients with extensive atherosclerosis predicts increased risk of strokes in postoperative period, or as a complication of acute myocardial infarction. Long-term preoperative injection of mexidol probably reduces the risk of postoperative stroke in extensive atherosclerosis.

  

 

References

1.     Louyenko VB, Doudarev VYe, Sorokina YeA. Diagnosis of ishemic stroke reasons early after the surgery in patients with occlusive atherosclerosis of brachiocephalic arteries. Siberian medical journal (Tomsk). 2009; 24(4-2): 62-64 [In Russ].

2.     Filimonova PA, Volkova LI, Alasheev AM, Grichuk EA. In hospital stroke in patients after cardiovascular surgery. Annals of clinical and experimental neurology. 2017; 11(1): 28-33 [In Russ].

3.     Kamenskaya OV, Loginova IYu, Klinkova AS, et al. Predictors of neurological complications during surgical treatment of the ascending aorta and aortic arch chronic dissection. S.S.Korsakov Journal of neurology and psychiatry. 2018. 118(7): 12-17 [In Russ].

https://doi.org/10.17116/jnevro20181187112

4.     Bilalova RR, Ibragimova GZ, Zaytseva AR, et al. Combined acute cerebrovascular disease and myocardial infarction treatment experience. Bulletin of Current Clinical Medicine. 2018; 11(5): 16-22 [In Russ].

https://doi.org/10.20969/VSKM.2018.11(5).16-22

5.     Berns SA, Zykova DS, Zykov MV, et al. The Role of Multifocal Atherosclerosis in Realization of New Cardiovascular Complications During One Year After Non ST-Elevation Acute Coronary Syndrome. Cardiologia. 2013; 53(8): 15-23 [In Russ].

6.     Garganeeva AA, Tukish OV, Kuzheleva EA, et al. Portrait of the patient with myocardial infarction over a 30-year period. Clinical medicine. 2018; 96(7): 641-647 [In Russ].

https://doi.org/10.18821/0023-2149-2018-96-7-641-647

7.     Echahidi N, Pibarot P, O'hara G, Mathieu P. Pathogenesis, Prophylaxis and treatment of atrial fibrillation after cardiac surgery interventions. Pathology of circulation and cardiac surgery. 2014; 18(3): 87-96 [In Russ].

8.     Karetnikova VN, Kalaeva VV, Evseeva MV, et al. Chronic renal disease in evaluation of course of postinfarction period. Clinical medicine. 2017; 95(6): 563-570 [In Russ].

https://doi.org/10.18821/0023-2149-2017-95-563-570

9.     Arous EJ, Simons JP, Flahive JM, et al. National variation in preoperative imaging, carotid duplex ultrasound criteria, and threshold for surgery for asymptomatic carotid artery stenosis. J.Vasc.Surg. 2015; 62(4): 937-944.

https://doi.org/10.1016/j.jvs.2015.04.438

10.   Belichenko OI, Dadvani SA, Abramova NN, Ternovoi SK. Magnetic resonance tomography in diagnosis of cerebrovascular diseases. Moscow. Vidar Publ.Co. 1998. 112P [In Russ].

11.   Fox AJ. Carotid endartectomy trials. Neuroimaging Clin N Am. 1996; 6(4): 931-938.

12.   Pokrovsky AV, Beloyartsev DF, Talybly OL. Analysis of remote results of eversion carotid endarterectomy. Angiology and vascular surgery. 2014; 20(4): 100-108 [In Russ].

13.   Bobrikova EE, Maksimova AS, Plotnikov MP, et al. Simultaneous cerebral MRI and MR-angiographic study of carotid arteries as screening technique for high-risk carotid atherosclerosis. Siberian medical journal (Tomsk). 2015; 30(4): 49-56 [In Russ].

14.   Purinya BA, Kasyanov VA. Biomechanics of large blood vessels of man. Riga: Zinatne Publ., 1980. 260P [In Russ].

15.   Pedly T. Haemodynamic of large blood vessels. Moscow. Mir Publ., 1983. 400P. [In Russ].

16.   Ussov WYu, Maksimova AS, Sinitsyn VE, et al. Gradient of luminal narrowing of internal carotid artery on atherosclerotic plaque as risk factor for cerebral ischemic damage. Russian Journal of Cardiology. 2019; 24(12): 62-69 [In Russ].

https://doi.org/10.15829/1560-4071-2019-12-62-69

17.   Ragino YuI, Volkov AM, Chernyavskyi AM. Stages of atherosclerotic plaque development and unstable plaque types: pathophysiologic and histologic characteristics. Russ. J.Cardiol. 2013; 5 (103): 88-95 [In Russ].

18.   Medixant. RadiAnt DICOM Viewer [Software]. Version 2020.1. Mar 9, 2020.

URL: https://www.radiantviewer.com

19.   Lomivorotov VV, Efremov SM, Pokushalov EA, Boboshko VA. Atrial fibrillation after cardiac surgery operations: pathiphysiology and methods of prophylaxis. Bulletin of anesthesiology and reanimatology. 2017; 14(1): 58-66 [In Russ].

20.   Chernyavskiy AM, Kalybekova AT. Comparative characteristics of biatrial and left atrial ablation in surgical treatment of long-standing persistant atrial fibrillation in patients with concomitant disease. Annals of arrhythmology. 2019; 16(4): 194-03 [In Russ].

21.   Gorokhov AS, Kozlov BN, Kuznetsov MS, Shipulin VM. Concomitant atherosclerosis of carotid and coronary arteries: choice of surgical tctics based on functional reserves of brain. Complex problems of cardiovascular diseases. 2013; (3): 50-56 [In Russ].

22.   Bukhovets IL, Maksimova AS, Plotnikov MP, et al. Ultrasonographic control of cerebral blood flow in patients with stenosis of brachiocephalic arteries before and after carotid endarterectomy. Angiology and vascular surgery. 2018; 24(1): 66-71 [In Russ].

23.   Kokov LS. Rentgeno-surgical methods of diagnosis and treatment of cardiovascular diseases. Urgent medical service. N.V. Sklifosovsky journal. 2013; (1): 23-27 [In Russ].

24.   Prokhorova ES, Kizimenko NN, Prokhorov SI. Magnetic resonance angiography in diagnosis of intracranial aneuisms. Medical Visualisation. 2005; (5): 105-108 [In Russ].

25.   Cho YD, Kim KM, Lee WJ, et al. Time-of-flight magnetic resonance angiography for follow-up of coil embolization with enterprise stent for intracranial aneurysm: usefulness of source images. Korean J Radiol. 2014; 15(1): 161-8.

https://doi.org/10.3348/kjr.2014.15.1.161

26.   Sato K, Yamada M, Kuroda H, et al. Time-of-Flight MR Angiography for Detection of Cerebral Hyperperfusion Syndrome after Superficial Temporal Artery-Middle Cerebral Artery Anastomosis in Moyamoya Disease. Am J Neuroradiol. 2016; 37(7): 1244-8.

https://doi.org/10.3174/ajnr.A4715

27.   Ballotta E, Angelini A, Mazzalai F, et al. Carotid endarterectomy for symptomatic low-grade carotid stenosis. J Vasc Surg 2014; 59: 25-31.

28.   Maximova AS, Bobrikova EE, Bukhovets IL, et al. The structure of atherosclerotic plaque as a defining factor of cerebrovascular reactivity in patients with carotid atherosclerosis. Siberian medical Journal (Tomsk). 2016; 31(2): 38-43 [In Russ].

29.   Baradaran H, Patel P, Gialdini G, et al Quantifying Intracranial Internal Carotid Artery Stenosis on MR Angiography. Am J Neuroradiol. 2017; 38(5): 986-990.

https://doi.org/10.3174/ajnr.A5113

30.   Lishchuk VA, Gazizova DSh, Frolov SV. Mathematical model of vessel bifurcation addressed to cardiovascular clinic. Problems of current sience and praxis. V.I.Vernadski University. 2009; 12(26): 127-131 [In Russ].

31.   Ussov WYu, Plotnikov MP, Del' OA, et al Contrastenhanced MRI of the aortic wall in the efficiency evaluation of ethyl methylhydroxypiridine succinate (mexidol) longterm use to prevent aorticprohression of aortic atherosclerosis. Bulletin of new medical technologies. 2018; 25(1): 125-132 [In Russ].

https://doi.org/10.24411/1609-2163-2018-15973

32.   Khazanov VA. Pharmacological regulation of energy metabolism. Experimental and clinical pharmacology. 2009; 72(4): 61-64 [In Russ].

 

 

Abstract:

Aim: was to elucidate factors of poor prognosis for chronic brain ischemia in «asymptomatic» patients with atherosclerotic stenosis of vertebral arteries, who regularly take optimal medical therapy.

Methods: in 1st group (n = 44), secondary prevention of cerebrovascular accidents was carried out in a combined strategy - stenting of vertebral arteries in combination with medication therapy, and in 2nd group (n = 56) - only medication therapy. Long-term follow-up was planned after 12, 24 and 36 months. Inclusion criteria: «asymptomatic» patients with stenosis of vertebral arteries 50-95%; diameter of vertebral arteries is not less than 3.0 and not more than 5 mm; presence of cerebral and focal symptoms corresponding to the initial (asymptomatic) stage of chronic brain ischemia (according to E.V. Schmidt). Primary endpoint: total frequency of cardiovascular complications (death, transient ischemic attack or stroke, myocardial infarction).

Results: the total frequency of major cerebral complications over 36 months of follow-up was 4.5% in group 1 and 37.5% in group II (? 2=15.101; p<0.0001). The frequency of cardiac events was 9.1 and 19.6%, respectively, to 1st and 2nd groups (? 2=14.784; p<0.0001). These indicators were obtained against the background of high patient adherence to treatment and high rates of achieving tough target lipid values. Restenosis of stents was observed in general, in 38.67% of patients from group I. Moreover, restenosis alone did not affect the incidence of major cerebral complications in the long-term period (? 2=0.1643; p=0.735). Most significant poor prognosis factors of chronic brain ischemia in «asymptomatic» patients with vertebral artery stenosis, who regularly take optimal medical therapy are: arrhythmia, total cholesterol more than 6.0 mmol/l, incomplete circle of Willis, arterial hypertension, bilateral defeat of vertebral arteries, (low-density lipoprotein) LDL levels of more than 3.5 mmol/I, combined lesion of vertebral and carotid arteries, calcification of vertebral arteries, coronary heart disease in anamnesis.

Conclusion: endovascular intervention in combination with medical therapy could help to avoid the development of major brain complications arising from the instability of atherosclerotic plaque in «asymptomatic» patients with vertebral artery stenosis, and in the presence of poor prognosis factors identified can be regarded as a method of secondary prevention of cerebral circulatory disorders.

 

References 

1.     Britov AN, Pozdnyakov YuM, Volkova EG, et al. National guidelines on cardiovascular prevention. Kardio-vaskulyarnaya terapiya i profilaktika. 2011;10(6)2: 1-64 [In Russ].

2.     Suslina ZA, Guglevskaja TS, Maksimova MJu, Morgunov VA. Cerebrovascular accidents: diagnosis, treatment, prevention. Moscow: MEDpress-inform, 2016, 440 [In Russ].

3.     Shchukin IA, Lebedeva AV, Burd GS, et al. Chronic cerebral ischemia: syndromological approaches to thera­py. Nevrologiya irevmatologiya. 2015;1:17-24 [In Russ].

4.     Zakharov W, Voznesenskaya TG. Neuropsychiatric Disorders: Diagnostic Tests; podobshch. red. N.N.Yakhno. M.: MEDpress-inform, 2015: 320 [In Russ].

5.     Chechetkin AO, Skrylev SI, Koshheev AJu, et al. Clinical and instrumental assessment of the effectiveness of stenting of the vertebral arteries in the near and remote postoperative periods. Annaly klinicheskoj i jeksperimental'noj nevrologii. 2018;12(3): 13-22 [In Russ].

http://doi.org/10.25692/ACEN.2018.3.2

6.     Sermagambetova ZhN, Maksimova MJu, Skrylev SI, et al. Interventional technologies for the prevention of stroke in the vertebral-basilar system. Consilium Medicum. 2017;19(2): 96-103 [In Russ].

7.     Migunova SG. Clinical and epidemiological study of cerebrovascular diseases and a comparative analysis of the effectiveness of treatment of patients with cerebral atherosclerosis: Diss. kand. med. Ekaterinburg, 2018: 145 [In Russ].

8.     Aboyans V, Ricco JB, Bartelink MEL et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Soci­ety for Vascular Surgery (ESVS). Eur J Vase Endovasc Surg. 2017 Aug 26.

http://doi.org/10.1093/eurhearti/ehx095

9.     Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardio­vascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). European Heart Journal. 2020;41:255-323.

http://doi.org/10.1093/eurhearti/ehz486

10.   Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). European Heart Journal. 2020;41: 111-188.

http://doi.org/10.1093/eurhearti/ehz455

11.   Kamchatnov PR, Umarova HJa, Kabanov AA, Abieva NA. The problem of diagnosis and treatment of patients with vertebrobasilar insufficiency. Lechebnoedelo. 2017;3: 68-75 [In Russ].

12.   Kocak B, Korkmazer B, Islak C, et al. Endovascular treatment of extracranial vertebral artery stenosis. World J. 2012;4:391-400.

http://doi.org/10.4329/wir.v4.i9.391

13.   Markus HS, Larsson SC, Kuker W, et al. VIST Investigators. Stenting for symptomatic vertebral artery stenosis: The Vertebral Artery Ischemia Stenting Trial. Neurology. 2017;89(12):1229-1236.

http://doi.org/10.1212/WNL.00000000000Q4385

14.   Babayan GB, Zorin RA, Pshennikov AS, et al. Predictors of neurological deficiency in hemodynamically significant stenoses of the carotid and vertebral arteries. Nauka molodykh (Eruditio Juvenium). 2019;7(4): 533-540 [In Russ].

http://doi.org/10.23888/HMJ201974533-540

15.   Rakhmonov RA, Todzhiddinov ТВ, Isoeva MB, Zuurbekova DP. Total Cardiovascular Risk - A New Approach to Stroke Prediction. Vestnik Avitsenny. 2017;19(4): 471-475. [In Russ].

http://doi.org/10.25005/2074-0581-2017-19-4-471-475

16.   Shao JX, Ling YA, Du HP, et al. Comparison of hemodynamic changes and prognosis between stenting and standardized medical treatment in patients with symptomatic moderate to severe vertebral artery origin stenosis. M edicine(Baltimore). 2019;98( 13): e14899.

http://doi.org/10.1097/md.0000000000014899

 

Abstract:

Background: pulmonary hypertension not only aggravates the course of myocardial infarction, but also significantly worsens the prognosis, increasing disability and mortality due to the steadily progressing course. The need to predict the development of pulmonary hypertension in patients with myocardial infarction is not in doubt, since a clear clinical picture manifests itself only in the late stages of the disease, when the effectiveness of the treatment reduces and its cost increases.

Aim: was to define most significant factors, influencing the development of pulmonary hypertension in the subacute period of myocardial infarction to elaborate a model for predicting this pathological condition.

Material and methods: study included 451 men aged 18-60 y.o. with a verified diagnosis of myocardial infarction. All patients underwent a standard diagnostic algorithm, including a comprehensive echocardiographic examination - in first 48 hours and at the end of the third week of the disease. The study group included 84 patients with pulmonary hypertension, which had occurred at the end of the third week of the disease at an initially normal level of mean pressure in the pulmonary artery. Control group consisted of 367 patients with a normal level of mean pulmonary artery pressure in both phases of the study or normalization of this indicator at the end of the subacute period of the disease. Using multivariate analysis of variance from the analytical base, we selected parameters associated with levels of mean pulmonary artery pressure, the proportion of patients with first­time pulmonary hypertension at the end of the subacute Ml. Then, with step-by-step and binary logistic regressions, most sensitive of them were selected for the prognostic model.

Results: study established a number of significant for the development of pulmonary hypertension in the subacute period of myocardial infarction clinical and anamnestic (heart rate, diastolic blood pressure, the presence of pulmonary edema and chronic lung diseases), laboratory (concentrations of the sodium, potassium, chloride; glucose, some parameters of lipid concentration in the blood plasma) and instrumental (the value of left atrium, end-diastolic size of the right ventricle, values of indices of end-systolic and end-diastolic left ventricular volumes, cardiac index, total pulmonary resistance, the presence of regurgitation at the aortic valve) parameters. Final prognostic model included mean pulmonary artery pressure, heart rate and the presence of aortic valve regurgitation of the second degree and higher in first 48 hours of myocardial infarction. Characteristics of the resulting model allow us to recommend it for practical use.

Conclusions: using a combination of these predictors, as well as prognostic modeling, makes it possible to distinguish among men under 60 years, a high-risk group for the development of pulmonary hypertension in the subacute period of the disease in order to conduct timely additional diagnostic and therapeutic measures.

 

References

1.     Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology and the European Respiratory Society: Endorsed by: Association for European Pediatric and Congenital Cardiology, International Society for Heart and Lung Transplantation. Eur Heart J. 2016;37(1): 67-119. PMID:26320113.

https://doi.org/10.1093/eurhearti/ehv317

2.     Haeck ML, Hoogslag GE, Boden H, et al. Prognostic Implications of Elevated Pulmonary Artery Pressure After ST-Segment Elevation Myocardial Infarction. Am J Cardiol. 2016; 118(3): 326-31. PMID: 27265675.

https://doi.orq/10.1016/i.amicard.2016.05.008

3.     Thygesen K, Alpert JS, Jaffe AS, et al. Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018;72(18):2231-2264. PMID: 30153967.

https://doi.org/10.1016/i.iacc.2O18.08.1038

4.     Lang RM, Badano LP, Mor-AviV, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16(3): 233-70. PMID: 25712077.

https://doi.org/10.1093/ehici/iev014

5.     Erlikh AD. Novel score for mortality risk prediction 6 months after acute coronary syndrome. Russian Journal of Cardiology. 2020;25(2):3416 [In Russ].

https://doi.org/10.15829/1560-4071 -2020-2-3416

6.     Sotnikov AV, Epifanov SYu, Kudinova AN etal. Predictors of recurrent ischemic damages in men under 60 years of age with myocardial infarction. Science of the young (Eruditio Juvenium) 2019; 7(4): 565-574 [In Russ].

http://doi.org/10.23888/HMJ201974565-574

7.     Panev Nl, FilimonovSN, Korotenko OYu et al. System for predicting the probability of developing respiratory failure in chronic mechanic bronchitis. Medicine in Kuzbass. 2017;16(3): 52-56 [In Russ].

8.     Bax JJ, Di Carli M, Narula J, Delgado V. Multimodality imaging in ischaemic heart failure. Lancet. 2019;393(10175):1056-1070. PMID: 30860031.

https://doi.org/10.1016/S0140-6736(18)33207-0

9.     Sheludko EG, Naumov DE, Prikhodko AG, Kolosov VP. Clinical and functional peculiarities of comorbid obstructive sleep apnea syndrome and asthma. Bulletin Physiology and Pathology o f Respiration. 2019; (71): 23-30 [In Russ].

http://doi.org/10.12737/article_5c88b5e86b9c18.75963991

10.   Chistyakova MV, Govorin AV, Radaeva EV. Opportunities for prediction of pulmonary hypertension development in patients with viral liver cirrhosis. Russian Journal of Cardiology. 2017;(4):70-74 [In Russ].

https://doi.org/10.15829/1560-4071-2017-4-70-74

11.   Agapitov LI. Diagnostics and treatment of childish pulmonary arterial hypertension. Diagnostics and treatment of childish pulmonary arterial hypertension. Lechaschi Vrach Journal. 2014; 4: 50 [In Russ].

12.   Laletin DA, Bautin AE, Rubinchik VE, Mikhailov AP. Right ventricle contractility during early postoperative period after coronary artery bypass grafting with cardiopulmonary bypass. Circulation Pathology and Cardiac Surgery. 2014; 18(3): 34-38 [In Russ].

13.   Kirillova W. Early ultrasound detection of venous congestion in pulmonary circulation in patients with chronic heart failure. Russian Heart Failure Journal. 2017; 18(3):208-212 [In Russ].

http://doi.org/10.18087/RHFJ.2017.3.2315

 

Abstract:

An important clinical challenge the management of patients with pulmonary embolism is to determine prognosis of the treatment generally, and thrombolytic reperfusion therapy as the main component of a specific pathogenetic treatment in particular. This knowledge is necessary to adjust the plan of remedial measures, the intensification of concomitant pharmacotherapy and provide a personalized approach to patients with thromboembolic lesions of the pulmonary circulation

Aim: was to identify reliable predictors of the onset of reperfusion in patients with pulmonary thromboembolism based on methods of radiographic diagnosis.

Materials and Methods: 138 patients (73 women and 65 men) underwent examination. Age of patients ranged from 20 to 80 years (mean age 55±25 years). The first group includes observation of 102 patients admitted to hospital in early stages of disease ( 1 month after onset of symptoms). The second group consisted of 36 patients admitted to the hospital at a later date (from 1.5 to 12 months). In groups we studied predictors of pulmonary reperfusion channel on the basis of direct angiography and multislice computed tomography As a control, a diagnostic method used direct angiography, which has a high sensitivity and specificity in identifying symptoms of pulmonary embolism. Using the method of multiple logistic regression odds ratios were prepared to achieve reperfusion in patients with certain diagnostic symptoms compared with patients who have no signs data in angiography

Results: diagnostic criteria, in presence of which on angio-pulmonography significantly increased the likelihood of reperfusion are «amputation» of segmental branches of the pulmonary artery ( p<0.05, 16,55(6,50-42,09 ) ), intraluminal defects of contrast staining (p < 0.05, 30.56 (8,66-107,84)) and the absence of distal blood flow (p<0,05; 6,16(2,47-15,40)). Signs, significantly reducing chances of achieving reperfusion are tortuosity of segmental branches of the pulmonary artery (p<0,05; 0,03(0,01-0,08)), slowing of contrast branches of the pulmonary artery (p<0,05; 0,11( 0.05-0.25)), and the presence of defects in the near-wall staining (p<0,05; 73,182 (9,606-557,542)).

Conclusions: basing on results of modern beam-diagnostics may reliably predict the likelihood of reperfusion in patients with pulmonary embolism.

 

Список литературы:

1.     Котельников М.В. Тромбоэмболия легочной артерии (современные подходы к диагностике и лечению). М.: Медицина. 2002; 136.

2.     Рекомендации Европейского Кардиологического Общества (ЕКО) по диагностике и лечению тромбоэмболии легочной артерии (ТЭЛА). European Heart Journal. 2008; 29: 2276-2315.

3.     Darryl Y. Sue, MD (ed.): Pulmonary Disease. In Frederic

S.    Dongard, MD (ed.): Current: Critical Care Diagnosis & Treatment. US: А Lange medical book. First Edition. 496.

4.     Kline JA, SteuerwaldMT, Marchick MR, et al. Prospective evaluation of right ventricular function and functional status 6 months after acute submassive pulmonary embolism: frequency of persistent or subsequent elevation in estimated pulmonary artery pressure. Chest. 2009; 136: 1202-1210.

5.     Grifoni S., Olivotto I. et al. Short-term clinical outcome of patients with acute pulmonary embolism, normal blood pressure, and echocardiographic right ventricular dysfunction. Circulation. 2000; 101: 2817-2822.

6.     Kreit J.W. The impact of right ventricular dysfunction on the prognosis and therapy of normotensive patients with pulmonary embolism. Chest. 2004; 125: 1539-1545.

7.     Савельев В.С., Яблоков Е.Г, Кириенко А.И., Массивная эмболия легочных артерий. М.: Медицина. 1990; 336 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы