Abstract: Introduction: treatment of patients with bilobar metastatic liver disease remains an unsolved problem. Among methods of regional chemotherapy, the least studied is isolated liver chemoperfusion, which is an unpopular technique due to its high trauma and difficult reproducibility. Aim: was to demonstrate the method of endovascular isolated liver chemoperfusion (EILHP) developed by us. Case report: EILCP was performed using a heart-lung machine (HLM) in a patient with cancer of the rectum, stage 2 (pT3N0M0), after combined treatment (radiation therapy (SOD 60 Gy) + anterior resection of the rectum in 2007). Disease progression. Isolated metastatic liver disease (01.2021). Isolated chemoperfusion was performed endovascularly using 2-balloon catheters, which provided vascular isolation of the liver and its isolated perfusion during the procedure. Posi- tioning of balloon catheters was performed in an open way through femoral artery and vein. Perfusion was carried out for 30 minutes with chemotherapy drugs (CtD) oxaliplatin 42,5 mg/m2 and irinotecan 82,5 mg/m2 injected directly into the circuit. Results: the duration of intervention was 160 minutes, intraoperative blood loss was 50 ml. During insertion and positioning of aortic balloon, a limited dissection of the aorta developed in area of left common iliac artery deviation, which did not require any intervention in postoperative period. Duration of intensive care unit stay was 1 day. There were no complications associated with aortic dissection during 3-month follow-up. Level of ALT and AST remained within reference values during entire postoperative period. No hematological toxicity was observed. Patient was discharged on the 7th day after operation in satisfactory condition. Patient underwent control CT scan of abdominal organs, 30 days after endovascular isolated chemoperfusion of the liver. According to the RECIST scale, stabilization of tumor process was noted. Conclusions: proposed technique of endovascular isolated liver chemoperfusion is technically feasible and safe. The use of this method may be appropriate in treatment of patients with isolated liver metastases who require dose reduction of chemotherapeutic agents due to their severe toxicity or high patient comorbidity.
Abstract: The aim of the study was to define the factors, having influence to results of repeated percutaneous coronary interventions (PCI) such as isolated balloon angioplasty (BA) and BA in combination with rotational atherectomy (RA), used for treatment of stenosis inside stented segments of coronary arteries. 133 patients, submitted to repeated PCI due to development of stenosis in the stented coronary segments, were included in the study. Clinical and angiographic data were registered three times: at time of initial stenting, during repeated PCI and after 18 monthes of follow-up. Repeated PCI were done together with intracoronary ultrasonography. Decrease of neointimal volume and degree of balloon hyperinflation had not any influence on clinical end-points. Cross-luminal area of the vessel was the only significant prognostic facor for success of repeated PCI. Borderline value of the area was 4,7 sq.mm. Combined technique of PCI (BA + RA) had advantages over isolated BA only in those cases, when large cross-sectional lumen area must be achieved. Good clinical results of patients with cross-sectional lumen area >4,7 sq.mm, obtained after repeated PCI, give possoibility not to use additional interventions. If sufficient increase of the vessel lumen area can not be achieved, an active approach to therapy of such patients should be used after PCI. The only significant beneficial prognostic factor for success of repeated PCA of the stenosed stented coronary segments was area of the vessels's lumen. It did not depend on technique of revascularisation. Such factors, as decrease of neointimal volume and degree of balloon hyperinflation, had not influence on frequency of restenosis and clinical end-points. References 1. Bauters С, Banos J.L., Van BelleE., McFadden E., Lablanche J.M., Bertrand M. Six months outcome after successful repeat percutaneous intervention for in stent restenosis. Circulation.1998; 97: 318-321. 2. Elchaninof H., Koning R., Tron C, Gupta V, Cribier A. Balloon angioplasty for the treatment of coronary in stent restenosis: immediate results and 6-month angiographic recurrent restenosis rate. J. Am. Coll. Cardiology .1998; 32:980-984. 3. Reimers В., Moussa I., Akiyama T. et al. long term clinical follow-up after successful repeat percutaneous intervention for stent restenosis. J. Am. Coll. Cardiology.1997; 30: 186-192. 4. Sharma S., Kini A., Garapati A. et al. Randomized trial of rotational atherectomy vs balloon angioplasty for in stent restenosis (Abstr.). Circulation.1998; 98 (1): 511. 5. Yokoi H., Kimura Т., Nakagawa Y, Nosaka H., Nouyoshi M. Long term clinical and quantitative angiographic follow-up after the Palmaz-Schatz stent restenosis. / Am. Coll. Cardiology.1993; 76: 618-622. 6. Mehran R., Dangas G., Mintz G. et al. In stent restenosis: «the great equalizer». Disappointing clinical outcomes with all interventional strategies (Abstr.). J. Am. Coll. Cardiology. 1999; 33: 1129-1191. 7. Mehran R., Mintz G.S., Popma JJ. et al. Mechanisms and results of balloon angioplasty for the treatment of in stent restenosis. Am. J. Cardiology. 1996; 78; 618-622. 8. Schiele E, Vuillemenot A., Meneveau N., Pales-Espinosa D., Gupta S., Bassand J.P. Effects of increasing balloon pressure on mechanism and results of balloon an gioplasty for treatment of restenosis after Palmaz-Schatz stent implantation. An angiographic and intra vascular ultrasound study. Cathet. Cardiovasc. Diagn. 1999; 46 (4): 3321. 9. Goldberg S.L., Berger P.B., Cohen DJ. et al. balloon angioplasty versus rotational atherectomy for in stent restenosis (abstr.). Circulation. 1998; 98 (1): 363. 10. Mehran R., Mintz G., Satler L. et al. Treatment of in stent restenosis with eximer laser coronary angioplasty. Mechanism and results compared to PTCA alone. Cir culation. 1997; 96: 2183-2189. 11. Dauerman H., Bairn D., Cutlip E. et al Mechanical debulking versus balloon angioplasty for the treatment of diffuse in stent restenosis. Am.]. Cardiol. 1998; 82: 277-284. 12. Lee S., Whan C, Cheong S. et al. Immediate and long term outcomes of rotational atherectomy versus balloon angioplasty alone for treatment of diffuse in stent restenosis. Am. J. Cardiology.1998; 82: 140-143. 13. Mahdi N.A., Pathan A.Z., Harrel L. et al. Directional atherectomy for the treatment of Palmaz-Schatz in stent restenosis. Am.]. Cardiology. 1998; 82: 1345-1351. 14. Kini A., Sharma S.K., Dangas G., Vidhun R., Duvvuri S. Marmur J. Predictors of restenosis after rotational at herectomy for in-stent restenosis (abstr.). Circulation.1998; 98 {!): 111. 15. Vom Dahl J., Radke P., Haage P. et al. Clinical and an giographic predictors of recurrent restenosis after percutaneous transluminal rotational atherectomy for treatment of diffuse in stent restenosis. Am. J. Cardiology.1999; 833: 862-867. 16. Schiele E, Meneveau N., Vuillemenot A. et al. Impact of intravascular ultrasound guidance in stent deployment on 6 month restenosis rate. J. Am. Coll. Cardiology. 1998; 32: 320-328.
Abstract: A multicentered study based on retrospective data covered 2012 patients and aimed at ascertaining the eficiency of various methods of treating patients with coronary restenosis after stenting. The average percent of complications after restenosis was about 20% during the period of study (1 1+4 months). The metaregression data analysis showed the positive correlation between the stage of residual stenosis of the stentet segment and the probability of complications. As the residual stenosis decreased at 1%, the frequency of complications diminished at 0,9%. Another factors under analysis did not show any evident influence, although we have registered a tendency towards better outcomes of the recurring operations as the diameter of the vessel increased. The recurring balloon angioplasty in cases of short restenosis and intracoronar radiation in cases of diffused restenotic lesions have proved to be the most effective operations. The indications for implanting the additional stents must be given very carefully, especially in cases of diabetes. References 1. Fischman D.L., Leon M.D., Baim D.S., et al. A randomized comparison of coronary stent placement and balloon angioplasty in treatment of coronary artery disease. N. Engl. J. Med. 1994; 331: 496 - 501. 2. Serruys P.W, de Jaeger P., Kimeneij E, et al. A comparison of balloon-expandable stent implantation with balloon angioplasty in patients with coronary heart disease. N. Engl]. Med. 1994; 331: 489 - 495. 3. Di Mario C, Marsico E, Adamian M. et al. New recipes for in-stent restenosis: cut, grate, roast, or sandwich the neointima? Heart. 2000; 84: 471 - 475. 4. Hoffmann R., Mintz G. S. Coronary in-stent restenosis-predictors, treatment and prevention. Eur. Heart J. 2000; 21: 1739- 1749. 5. Leon M.B., Tierstein P.S., Moses J.W et al. Localized intracoronary gamma-radiation therapy to inhibit the occurrence of restenosis after stenting. N. Egl. J. Med. 2001; 344: 250-256. 6. Waksman R., White R.L., Chan R.C., et al. Intracoronary gamma-radiation therapy after angioplasty inhibits reccurence in patients with in-stent restenosis. Circulation. 2000; 101: 2165 - 2171. 7. Sousa J. E., Costa M.A., Abizaid A., et al. Lack of neoitimal proliferation after implantation of sirolimus-coated stents in human coronary arteries: a quantitative coronary angiography and three-dimensional intravascular ultrasound study. Circulation. 2001; 10: 192 - 195. 8. Kuntz R.E., Gibson СМ., Nobuyoshi M., et al. Generalized model of restenosis after conventional balloon angioplasty, stenting and directional atherectomy. J. Am. Coll. Cardiology. 1993; 21: 15 - 25.