Website is intended for physicians
Search:
Всего найдено: 4

Abstract:

Aim: was to study the mutual influence of new coronavirus infection COVID-19 and acute coronary syndrome and to evaluate the effectiveness of percutaneous coronary interventions in these conditions.

Material and methods: for the period from March 21, 2020 to October 31, 2021, 5093 patients were treated for COVID-19. Including 208 patients with acute coronary syndrome with concurrent COVID-19 disease. All patients underwent following diagnostic procedures: computed tomography of the chest, electrocardiography, echocardiography, coronary angiography and, if necessary, percutaneous coronary intervention.

Results: we present data on the distribution of patients with COVID-19 according to the presence or absence of ST segment elevation on the electrocardiogram and the degree of lung tissue damage, as well as information on the nature of coronary interventions and mortality in these groups. A high frequency of massive thrombosis of infarct-related coronary arteries was demonstrated in the group of patients with STEMI. Possible mechanisms of left ventricular dysfunction that persist after percutaneous coronary intervention are described. A positive effect of endovascular myocardial revascularization on the degree of hypoxia in patients with COVID-19 was shown.

Conclusions: development of acute coronary syndrome with concurrent coronavirus infection significantly worsens the prognosis of the disease. Despite of the success of endovascular treatment, worsening COVID-19 infection can be accompanied by a sharp deterioration in the condition of patients, leading to death.

 

 

Abstract:

Introduction: basilar artery thrombosis (BAT) is the cause of about 1% of ischemic strokes (IS). About 27% of strokes in posterior circulation are associated with BAT. Mortality in BAT without recanalization reaches 85-95%. In 80.7% of patients with BAT at the onset of disease a decrease in level of consciousness is observed, in 34% of them – coma.

Aim: was to show the possibility of performing thrombectomy (TE) in patients with BAT and reduced level of consciousness as the only effective way to prevent death in this pathology.

Materials and methods: two case reports of successful TE from basilar artery in patients with IS and decrease in level of wakefulness to coma, are presented.

Results: article describes two successful cases of TE in patients with angiographically confirmed BAT and decrease in the level of consciousness to moderate coma at the onset of disease. In two presented patients, TE made a complete restoration of BA blood flow. Good clinical outcomes were noted in both patients by 90th day of disease (modified Rankin scale 0-2 points). The Rivermead mobility index at discharge from hospital was 14 points, and the Bartel index by 90th day – complete independence from others in everyday life (from 90 to 100 points), and that once again indicates that TE in BAT is not only a life-saving procedure, but significantly improves functional and clinical outcomes of disease.

Conclusions: basilar artery thrombosis is a life-threatening condition that requires urgent reperfusion therapy as the only effective method of treatment. Endovascular treatment for basilar artery thrombosis should be considered in all patients, regardless the decrease in the level of consciousness at the onset of disease, because thrombectomy is a life-saving procedure.

  

 

References 

1.     Reinemeyer NE, Tadi P, Lui F. Basilar Artery Thrombosis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; January 31, 2021. Available at:

https://www.ncbi.nlm.nih.gov/books/NBK532241/

2.     Ekker MS, Boot EM, Singhal AB, et al. Epidemiology, aetiology, and management of ischaemic stroke in young adults. Lancet Neurol. 2018; 17(9): 790-801.

https://doi.org/10.1016/S1474-4422(18)30233-3

3.     Ikram A, Zafar A. Basilar Artery Infarct. In: StatPearls. Treasure Island (FL): StatPearls Publishing; August 10, 2020. Available at:

https://www.ncbi.nlm.nih.gov/books/NBK551854/

4.     Gory B, Mazighi M, Labreuche J, et al. Predictors for Mortality after Mechanical Thrombectomy of Acute Basilar Artery Occlusion. Cerebrovasc Dis. 2018; 45(1-2): 61-67.

https://doi.org/10.1159/000486690

5.     Writing Group for the BASILAR Group, Zi W, Qiu Z, et al. Assessment of Endovascular Treatment for Acute Basilar Artery Occlusion via a Nationwide Prospective Registry. JAMA Neurol. 2020; 77(5): 561-573.

https://doi.org/10.1001/jamaneurol.2020.0156

6.     Bracard S, Ducrocq X, Mas JL, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol. 2016; 15(11): 1138-1147.

https://doi.org/10.1016/S1474-4422(16)30177-6

7.     Liu Z, Liebeskind DS. Basilar Artery Occlusion and Emerging Treatments. Semin Neurol. 2021; 41(1): 39-45.

https://doi.org/10.1055/s-0040-1722638

8.     Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2019; 50(12): 344-418.

https://doi.org/10.1161/STR.0000000000000211

9.     Baik SH, Park HJ, Kim JH, et al. Mechanical Thrombectomy in Subtypes of Basilar Artery Occlusion: Relationship to Recanalization Rate and Clinical Outcome. Radiology. 2019; 291(3): 730-737.

https://doi.org/10.1148/radiol.2019181924

10.   Weber R, Minnerup J, Nordmeyer H, et al. Thrombectomy in posterior circulation stroke: differences in procedures and outcome compared to anterior circulation stroke in the prospective multicentre REVASK registry. Eur J Neurol. 2019; 26(2): 299-305.

https://doi.org/10.1111/ene.13809

11.   Kang DH, Jung C, Yoon W, et al. Endovascular Thrombectomy for Acute Basilar Artery Occlusion: A Multicenter Retrospective Observational Study. J Am Heart Assoc. 2018; 7(14): 009419.

https://doi.org/10.1161/JAHA.118.009419

12.   Liu X, Dai Q, Ye R, et al. Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): an open-label, randomised controlled trial. Lancet Neurol. 2020; 19(2): 115-122.

https://doi.org/10.1016/S1474-4422(19)30395-3

13.   Potter JK, Clemente JD, Asimos AW. Hyperdense basilar artery identified on unenhanced head CT in three cases of pediatric basilar artery occlusion. Am J Emerg Med. 2021; 42: 221-224.

https://doi.org/10.1016/j.ajem.2020.11.055

 

Abstract:

Aim: was to develop a compleх ultrasound assessment of atherosclerotic plaque instability in correlation with morphological evaluation.

Material and methods: research included 121 patients with stenosis of left/right internal carotic artery (ICA) of 50% and more (due to NASCET scale): 80 men and 41 women, mean age 56,0 years. All patients underwent standart and contrast-enhanced ultrasonic scanning (CEUS), bilateral duplex monitoring of cerebral blood flow with registration of microembolic signals (MES). All patients in period up to 3 days after hospitalization - underwent carotid endarterectomy with histological examination of atheroscleroitc plaque.

Results: analysis of relationship between ultrasound and histological characteristics showed a moderate association between the intensity of contrast agent accumulation and the degree of plaque vascularization (Cramer's V 0,529; p<<0,000;) number of lipofages (Cramer's V 0,569; p<<0,001). There were no significant differences between the degree of plaque vascularization and the degree of plaque stenosis (p<0,05). We revealed significant differences between the number of MES and the intensity of atherosclerotic plaque blood supply (<<0,001).

Discussions: intensive accumulation of contrast agent in a plaque is associated with the process of angiogenesis and inflammation, and contrast-enhanced ultrasound examination of the plaque is promising for assessing its instability and the possible risk of developing cerebral vascular complications. Neovascularization intensity detected by contrast-enhanced ultrasound is associated with the number of detected microparticles in the cerebral blood flow, and does not depend on the degree of stenosis.

Conclusions: method of comprehensive assessment using CEUS and Doppler detection of microembolic particles can be effective in stratifying the risk of possible ischemic stroke in asymptomatic patients, for optimizing indications for surgical treatment of atherosclerotic plaque, and evaluating the effectiveness of lipid-lowering and statin therapy.

  

References

1.     Liapis CD, Bell PR., Mikhailidis D., Sivenius J.et al. ESVS Guidelines Collaborators. ESVS guidelines. Invasive treatment for carotid stenosis: indications, techniques. Eur J Vasc Endovasc Surg. 2009 Apr; 37(4 Suppl):1-19.

2.     Nicolaides AN, Kakkos SK, Kyriacou E, Griffin M, et al. Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification.Asymptomatic Carotid Stenosis and Risk of Stroke (ACSRS) Study Group. J Vasc Surg. 2010 Dec; 52(6):1486-1496.e1-5.

3.     Guideline on the Management of Patients With Extracranial Carotid and Vertebral Artery Disease ACCF/AHA Pocket Guideline Based on the 2011ASA/ACCF/AHA/AANN/AANS/ACR/CNS/SAIP/SCAI/ SIR/SNIS/SVM/SVS. P 22-23.

4.     Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis.Circulation. 2002 Mar 5; 105(9):1135-43.

5.     Redgrave JN, Lovett JK, Rothwell PM. Histological features of symptomatic carotid plaques in relation to age and smoking: the oxford plaque study. Stroke. 2010; 41:2288-94.

6.     Gray-Weale AC, Graham JC, Burnett JR, Byrne K, Lusby RJ. Carotid artery atheroma: comparison of preoperative B-mode ultrasound appearance with carotid endarterectomy specimen pathology. J Cardiovasc Surg. 1988;29:676-681.

7.     Kwon HM, Sangiorgi GU, Ritman EL, et al.Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest 1998; 101: 15511556.

8.     Cosgrove D. Angiogenesis imaging-ultrasound. Br J Radiol 2003; 76:S43-9.

9.     Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol 1995; 26:450-6.

10.   Balahonova T.V., Pogorelova O.A., Tripoten' M.I., Gerasimova V.V., Safiulina A.A., Rogoza A.N. Contrast enhancement during ultrasound examination of blood vessels: atherosclerosis, nonspecific aortoarteritis. Ul'trazvukovaya i funkcional'naya diagnostika 2015; 4: 33-45. [In Russ].

11.   Coli S, Magnoni M, Sangiorgi G, Marrocco-Trischitta M. et al.Contrast-Enhanced Ultrasound imaging of intraplaque neovascularisatopn in carotid arteries. J of the American College of Cardioilogy 2008; 52(3): 345-2.

12.   Vicenzini E. Giannoni MF, Puccinelli F. et al. Detection of carotid adventitial vasa vasorum and plaque vascularisation with ultrasound cadence contrast pulsr sequencing technique and echo-contrast agents. Stroke 2007; 38:2841-3.

13.   Shah F, Balah P, Weinber M, et al. Contrast-enhanced ultrasound imaging of atherosclerotic plaque neovascularization: a new surrogate marker of atherosclerosis? Vasc Med 2007; 12:291-7.

14.   CHechetkin AO, Druina L.D., Possibilities of contrast ultrasound in angioneurology. Annaly klinicheskoj I eksperimental'noj nevrologii 2015; 9(2): 33-40. [In Russ].

15.   Silvestre-Roig C, de Winther MP Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Weber C, Daemen MJ, Lutgens E, Soehnlein O. Circ Res. 2014 Jan 3; 114(1):214-26.

16.   Ross R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999; 138:S419-20. doi: 10.1016/S0002-8703(99)70266-8.

17.   Casadei M, Floreani R, Catalini C, Serra AP, Assanti and P Concif Sonographic characteristics of carotid artery plaques: Implications for follow-up planning? J Ultrasound. 2012 Sep; 15(3): 151-157.

18.   Carmeliet P Angiogenesis in health and disease. Nat Med 2003;9;653-52.

19.   Moulton K.,Vakili K., Zurakovski D., et al. Inhibition of plaque neovascularizatopn reduces macrophage accumulation and progression of anvanced atherosclerosis. Proc Natl Acad Sci U S A 2003; 100: 4736-41.

20.   Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation. 2003;108:1772-8. doi: 10.1161/01.CIR.0000087481.55887.C9.

21.   Gutstein DE, Fuster V. Pathophysiology and clinical significance of atherosclerotic plaque rupture. Cardiovasc Res. 1999; 41:323-33. doi: 10.1016/S0008-6363(98) 00322-8.

22.   Petrikov SS, Hamidova LT. About the conference «Emergency care for patients with acute cerebrovascular accident» ZHurnal im. N.V. Sklifosovskogo «Neotlozhnaya medicinskaya pomoshch'». 2015; 1:11-18. [In Russ].

23.   Krylov VV., Dash'yan VG., Lemenyov VL., Dalibaldyan VA., i dr. Surgical treatment of patients with bilateral occlusion-stenotic lesions of brachiocephalic arteries. Nejrohirurgiya.2014; 16-25. [In Russ].

24.   Novikov N.E. Contrast-enhanced ultrasound examinations. History of development and modern possibilities. Russian Electr. J. Radiol. (REJR). 2012; 2 (1): 20-28. [In Russ].

 

Abstract:

The review is devoted to possibilities of ultrasound and functional diagnostic methods in the diagnosis of ischemic stroke of unknown etiology. Main causes of cryptogenic ischemic stroke are highlighted in the article. Advances in high resolution ultrasound of extracranial and intracranial vessels and of the heart, prolonged heart rhythm monitoring are instrumental techniques to identify arterial and cardiac hidden causes of stroke. We reviewed literature, on the basis of available data, designed a diagnostic algorithm for patients with patent foramen ovale (PFO) and risk of embolism from atherosclerotic plaque. 

 

References

I.       Petrikov S.S., Chamidova L.T. O conferencii «Neotlozhnaya pomosh bolnim s ostrimi narusheniaymi mozgovogo krovoobrasheniaya». [About conferention «Urgent treatment of patients with acute stroke»] Zhurnal im. N.V. Sklifisivskogo Neotbzhnayapomosh. 2015; 1:10-18 [In Russ].

2.      Grau A.J., Weimar C., Buggle F. et al. Risk factors, outcome, and treatment in subtypes of ischemic stroke: the German stroke data bank. Stroke. 2001; 32(11): 2559-66.

3.      Li L., Yiin G.S., Geraghty O.C., et al. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. The Lancet Neurology. 2015; 14(9): 903-13.

4.      Hart R.G., Diener H.C., Coutts S.B., Easton J.D. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014;13(4): 429-38.

5.      Tegeler C.H., Hart R.G. Atrial size, atrial fibrillation and stroke. Ann. Neurol. 1987; 21: 315- 316.

6.      Hohnloser S.H., Capucci A., Fain E. et. al. ASSERT Investigators and Committees ASymptomatic atrial fibrillation and Stroke Evaluation in pacemaker patients and the atrial fibrillation Reduction atrial pacing Trial (ASSERT). Am Heart J. 2006; 152(3): 442-447.

7.      Yaghi S., Elkind M.S. Cryptogenic stroke: a diagnostic challenge. Neurol Clin Pract. 2014(4): 386-393.

8.      Favilla C.G., Ingala E., Jara J. et al. Predictors of finding occult atrial fibrillation after cryptogenic stroke. Stroke. 2015(46): 1210-1215.

9.      Miller D.J., Khan M.A., Schultz L.R. et al. Outpatient cardiac telemetry detects a high rate of atrial fibrillation in cryptogenic stroke. J Neurol Sci. 2013(324): 57-61.

10.    Gladstone D.J., Dorian P, Spring M. et al. Atrial premature beats predict atrial fibrillation in cryptogenic stroke: results from the embrace trial. Stroke. 2015; 46: 936-941.

11.    Keach J.W., Bradley S.M., Turakhia M.P, Maddox TM. Early detection of occult atrial fibrillation and stroke prevention. Heart.2015; 101: 1097-102.

12.    Gladstone D.J., Dorian P, Spring M. et al. Atrial premature beats predict atrial fibrillation in cryptogenic stroke: results from the embrace trial. Stroke.2015; 46:936-941.

13.    Brambatti M., Connolly S.J., Gold M.R. et al. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation.2014; 129: 2094-2099.

14.    Kamel H., O’Neal W.T., Okin PM., et al. Electrocardiographic left atrial abnormality and stroke subtype in atherosclerosis risk in communities study. Ann Neurol.2015; 78(5): 670-678.

15.    Kamel H., Soliman E.Z., Heckbert S.R. et al. P- wave morphology and the risk of incident ischemic stroke in the multi-ethnic study of atherosclerosis. Stroke. 2014; 45:2786-2788.

16.    Sinner M.F, Stepas K.A., Moser C.B. et al. B-type natriuretic peptide and c-reactive protein in the prediction of atrial fibrillation risk: the CHARGE-AF consortium of community-based cohort studies. Europace. 2014; 16: 1426-1433.

17.    Kernan W.N., Ovbiagele B., Black H. R., Bravata D. M. Guidelines for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2014; 45: 2160-2236.

18.    Melkumova E., Thaler D.E. Cryptogenic Stroke and Patent Foramen Ovale Risk Assessment. Interv Cardiol Clin. 2017; 6(4): 487-493.

19.    Alsheikh-Ali A.A., Thaler D.E., Kent D.M. Patent foramen ovale in cryptogenic stroke: incidental or pathogenic? Stroke. 2009; 40: 2349-2355.

20.    Overell J.R., BoneI., Lees K.R. Interatrial septal abnormalities and stroke: a meta-analysis of case-control studies. Neurology. 2000; 55(8): 1172-1179.

21.    Ahmed N., Steiner T., Caso V., Wahlgren N. Recommendations from the ESO-Karolinska Stroke Update Conference. European Stroke Journal. 2016; 0(0): 1-8.

22.    Spencer M.P, Moehring M.A., Jesurum J. et al. Power m-mode transcranial Doppler for diagnosis of patent foramen ovale and assessing transcatheter closure. J Neuroimaging. 2004; 14(4): 342-349.

23.    Katsanos A.H., Patsouras D., Tsivgoulis G. et al. The value of transesophageal echocardiography in the investigation and management of cryptogenic cerebral ischemia: a single-center experience. Neurol Sci. 2016; 37(4): 629-32.

24.    Wei-jan C., Peiliang K.,Wen-Pin L., Fang-¥ue U. Detection Of Patent Foramen Ovale By Contrast Transesophageal Echocardiography. Chat. 1992; 101: 1515-20.

25.    Schnabel R.B., Yin X., Gona P, Larson MG. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015; 386(9989):154-62.

26.    Arboix A., Alio J. Acute cardioembolic cerebral infarction: answers to clinical questions. Curr Cardiol Rev. 2012;8(1):54-67.

27.    Christian T. R.Stroke Prevention in Atrial Fibrillation. Circulation. 2012; 125(16): e588-90.

28.    Zabalgoitia M., Halperin J.l., Pearce L. A. et al. Transesophageal Echocardiographic Correlates of Clinical Risk of Thromboembolism in Nonvalvular Atrial Fibrillation. Journal of the AmericanCollege of Cardiology. 1998; 31(7): 1622-1626.

29.    diesebro J.H., Fuster V. Valvular heart disease and prosthetic heart valves. Thrombosis in cardiovascular disorders. Eds V. Fuster, M. Verstraete.- Philadelphia: W.B.Saunders, 1992; 191-214.

30.    Tunick P.A., Kronzon I. Protruding atherosclerotic plaque in the aortic arch of patients with systemic embolization: a new finding seen by transesophageal echocardiography. Am Heart J. 1990; 120: 658-660.

31.    Tunick P.A., Culliford A.T., Lamparello P.J., Kronzon I. Atheromatosis of the aortic arch as an occult source of multiple systemic emboli. Ann Intern Med. 1991; 114: 391392.

32.    Amarenco P., Cohen A., Tzourio C. et al. Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med. 1994; 331(22): 1474- 1479.

33.    Bulwa Z., Gupta A. Embolic stroke of undetermined source: The role of the nonstenotic carotid plaque. J Neurol Sci. 2017; 15(382): 49-52.

34.    Viguier A., Pavy le Traon A., Massabuau P. et al. Asymptomatic cerebral embolic signals in patients with acute cerebral ischaemia and severe aortic arch atherosclerosis. Journal of Neurology. 2001; 248: 768-771.

35.    Rundek T., Di Tullio M.R., Sciacca R.R. et al. Association between large aortic arch atheromas and high-intensity transient signals in elderly stroke patients. Stroke. 1999; 33: 2683-2686.

36.    Gupta A., Gialdini G., Lerario M.P.et al. Magnetic resonance angiography detection of abnormal carotid artery plaque in patients with cryptogenic stroke. J Am Heart Assoc. 2015; 4(6): e002012.

37.    Freilinger T.M., Schindler A., Schmidt C.et al. Prevalence of nonstenosing, complicated atherosclerotic plaques in cryptogenic stroke. JACC Cardiovasc Imaging. 2012; 5: 397-405.

38.    Casadei A., Floreani M., Catalini R. et al. Sonographic characteristics of carotid artery plaques: Implications for follow-up planning?J Ultrasound. 2012; 15(3): 151-157.

39.    Rafailidis V., Charitanti A., Tegos T. et al. Contrast-enhanced ultrasound of the carotid system: a review of the current literature. J Ultrasound. 2017; 20(2): 97-109.

40.    Nedeltchev K., der Maur T.A., Georgiadis D. et al. Ischaemic stroke in young adults: predictors of outcome and recurrence. J Neurol Neurosurg Psychiatry. 2005; 76(2): 191-195.

41.    Caplan L.R. Dissections of brain-supplying arteries. Nat Clin Pract Neurol. 2008; 4(1): 34-42.

42.    Gunther A., Witte O.W., Freesmeyer M. et al. Eur Neurol. 2016; 76(5-6): 284-294.

43.    Clevert D.A., Horng A., Jung E.M. et al. Contrast-enhanced ultrasound versus conventional ultrasound and MS-CT in the diagnosis of abdominal aortic dissection. Clin Hemorheol Microcirc. 2009; 43: 129-139.

44.    Graus F., Rogers L.R., Posner J.B. Cerebrovascular complications in patients with cancer. Medicine. 1985; 64(1): 16-35.

45.    Kurabayashi H., Hishinuma A., Uchida R et al. Delayed manifestation and slow progression of cerebral infarction caused by polycythemia rubra vera. Am J Med Sci. 2007; 333(5): 317-320.

46.    Giray S., Sarica F.B., Arlier Z., Bal N. Recurrent ischemic stroke as an initial manifestation of an concealed pancreatic adenocarcinoma: Trousseau’s syndrome. Chin Med J. 2011; 124(4): 637-640.

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы