Website is intended for physicians
Всего найдено: 7


Aim: was to study the efficacy and functionality of the Yukon Chrome PC stent in clinical practice.

Materials and methods: in 2021, a prospective, observational study of the safety, effectiveness of the Yukon Chrome PC stent, as well as its functionality during implantation in clinical practice, was launched on the basis of 25 domestic clinics. The study included 364 patients who underwent implantation of 495 Yukon Chrome PC stents. Mean age of patients was 62,8 years (from 33 to 89 years). Men were 263 (72,3%). The vast majority (82,4%) of patients were diagnosed with acute coronary syndrome (ACS): without ST segment elevation - 180 (49,45%) patients; with ST segment elevation - 120 (32,9%) patients. Unstable angina was verified in 22 (6%) patients. There were 42 (11,5%) patients with stable angina class 2-3.

Moderate tortuosity of vessels occurred in 27,7% of cases, while severe tortuosity of vessels occurred in 3,57% of cases. Moderate calcification was noted in 115 (31,5%) patients, severe/massive - in 23 (6,3%) cases. A complex lesion combining severe/moderate calcification and severe/moderate tortuosity of the target artery occurred in 79 (21,7%) patients.

Results: technical success of the procedure was achieved in 97,5% of cases. In one patient with severe calcification, the Yukon Chrome PC stent could not be inserted into the affected area. Attempts to implant another stent were also unsuccessful.

Depending on the number of implanted stents, the patients were distributed as follows: 3 stents were inplanted in 31 (8,5%) patients; 2 stents - 102 (28%) patients, 1 stent - 231 (63,5%) patients.

Bifurcation stenting using a two-stent technique was performed in 69 (19%) patients. Stenting of the left main was performed in 11 (3%) cases. Predilation was performed in 245 (67%) patients; postdilation - in 179 (49%) patients.

Conclusion: analysis of hospital results of implantation of Yukon Chrome PC stents indicates good flexibility and deliverability of stents even in patients with moderate and severe sheath calcification.

The overall assessment of the functional characteristics of the stent among endovascular surgeons who performed stenting is quite high.




Introduction: the main methods for diagnosing cardiac neoplasms, allowing to determine the localization, size, involvement of heart structures, to suggest the nature of the pathological process and to plan treatment tactics, are: echocardiography (EchoCG), contrast multispiral computed coronary angiography (MSCT CAG), magnetic resonance imaging (MRI) and positron emission computed tomography (PET CT). At the same time, any additional information about the pathological process can improve the quality of diagnosis and treatment. So, for example, selective coronary angiography (CAG), which in this case can be performed to clarify the coronary anatomy and exclude concomitant coronary atherosclerosis, in hands of attentive and experienced specialist of endovascular diagnostic and treatment methods can make a significant contribution to understanding the nature of blood supply of heart neoplasm, thereby bringing closer the formulation of the correct diagnosis and, ultimately, improving results of surgical treatment.

Aim: was to study the nature of blood supply of heart myxoma based on results of a detailed analysis of data of selective coronary angiography in patients with this pathology.

Material and methods: since 2005, 20 patients underwent surgery to remove heart myxoma. The average age of patients was 56,6 + 8,0 (43-74) years. According to data of ultrasound examination, sizes of myxomas ranged from 10 to 46 mm in width and from 15 to 71 mm in length (average size ? 25,6 ? 39,1 mm). In 2/3 of all cases (15 out of 20,75%), the fibrous part of the inter-atrial septum (fossa oval region) was the base of myxomas. In 8 of 20 (40%) cases, tumor prolapse into the left ventricle through structures of the mitral valve was noted in varying degrees. In order to exclude coronary pathology, CAG was performed in 14 cases, in the rest - MSCT CAG.

Results: of 14 patients with myxoma who underwent selective coronary angiography, 12 (85,7%) patients had distinct angiographic signs of vascularization. In all 12 cases, the sinus branch participated in the blood supply of myxoma, begins from the right coronary artery (RCA) in 10 cases: in 7 case it begins from proximal segment of the RCA and, in 3 cases, from the posterior-lateral branch (PLB) of the RCA. In one case, the source of blood supply of neoplasm was the sinus branch extending from PLB of dominant (left type) circumflex artery of the left coronary artery (PLB CxA LCA). In one case, the blood supply to the neoplasm involved branches both from the RCA and CxA, mainly from the left atrial branch of CxA. Moreover, in all 12 cases, sinus branch formed two branches: branch of sinus node itself and left atrial branch. It was the left atrial branch that was the source of blood supply of myxoma. Analysis of angiograms in patients with myxoma of LA showed that left atrial branch in terminal section formed a pathological vascularization in the LA projection, accumulating contrast-agent in the capillary phase (MBG 3-4). In addition to newly formed vascularization, lacunae of irregular shape were distinguished, the size of which varied from 2 to 8 mm along the long axis. In 8 cases, hypervascular areas with areas of lacunar accumulation of contrast-agent showed signs of paradoxical mobility and accelerated onset of venous phase. In two cases, there were distinct angiographic signs of arteriovenous shunt. In 2 cases (when the size of the myxoma did not exceed 15-20 mm according to EchoCG and CT), angiographic signs allowing to determine the presence of LA myxoma were not so convincing: there was no lacunar accumulation of contrast-agent; small (up to 10 mm) hypervascular areas were noticed, the capillary network of which stood out against the general background of uniform contrasting impregnation and corresponded to MBG grade 1-2.

Conclusion: according to our data, angiographic signs of vascularization of myxomas are detected in most cases with this pathology (85,7%). The source of blood supply, in the overwhelming majority of cases, is branch of coronary artery, which normally supplies the structure of the heart, on which the basement of the pathological neoplasm is located. The aforementioned angiographic signs characteristic of myxomas deserve the attention of specialists in the field of endovascular diagnosis and treatment and should be described in details in protocols of invasive coronary angiography.



1.     Петровский Б.В., Константинов Б.А., Нечаенко М.А. Первичные опухоли сердца. М.: Медицина, 1997; 152.

Petrovskiy BV, Konstantinov BA, Nechaenko MA. Primary heart tumors. M.: Medicina, 1997 [In Russ].

2.     Balci AY, Sargin M, Akansel S, et al. The importance of mass diameter in decision-making for preoperative coronary angiography in myxoma patients. Interact Cardiovasc Thorac Surg. 2019; 28(1): 52-57.

3.     Omar HR. The value of coronary angiography in the work-up of atrial myxomas. Herz. 2015; 40(3): 442-446.

4.     Gupta PN, Sagar N, Ramachandran R, Rajeshekharan VR. How does knowledge of the blood supply to an intracardiac tumour help? BMJ Case Rep. 2019; 12(2): 225900.

5.     Marshall WHJr., Steiner RM, Wexler L. Tumor vascularity in left atrial myxoma demonstrated by selective coronary arteriography. Radiology. 1969; 93(4): 815-816.

6.     Lee SY, Lee SH, Jung SM, et al. Value of Coronary Angiography in the Cardiac Myxoma. Clin Anat. 2020; 33(6): 833-838.



Introduction: every year in the world, more than 13 millions strokes are recorded, most often (up to 80%) - acute cerebrovascular accidents of ischemic type, in which the cause of cerebral infarction is acute embolic occlusion of intracranial artery. Restoration of cerebral perfusion as early as possible from the onset of the disease can lead to a decrease of infarction zone and an improvement in clinical outcomes of the disease.

Case report: a 78-year-old patient was admitted with a clinical picture of acute stroke 90 minutes after onset; after computed tomography was performed, according to generally accepted method, systemic thrombolytic therapy was started. Angiography (occlusion of left middle cerebral artery (MCA) in the M1 segment followed by aspiration and then mechanical thrombectomy showed an «early» bifurcation of middle cerebral artery with a large lateral branch. Occluding thrombus was localized precisely in the area of MCA bifurcation, in branches of equal diameter. After unsuccessful attempts at thrombus extraction using the standard thrombus extraction and aspiration technique, patient underwent thrombus extraction using the original method (we called R-Culotte): simultaneous use of two retrievers positioned in the Culotte style (Culotte - «pants», French, R -retriever, English) in lumen of the bifurcation of middle cerebral artery. Blood flow in MCA was restored to mTICI-3 without complications. After the intervention, there was a rapid positive trend. Patient was discharged on 12th day with minimal neurological deficit.

Conclusions: this technique allowed to remove the thrombus and restore antegrade blood flow without complications after a series of unsuccessful attempts using the standard approach. Endovascular treatment of ischemic stroke has opened a new era in the treatment of this formidable disease. The search for new techniques for using existing devices contributes to the development of this promising technique.



1.     Ciccone A, del Zoppo GJ. Evolving Role of Endovascular Treatment of Acute Ischemic Stroke. Curr Neurol Neurosci Rep. 2014 Jan; 14(1): 416.

2.     Sardar P, Chatterjee S, Giri J, et al. Endovascular therapy for acute ischaemic stroke: a systematic review and meta-analysis of randomized trials. Eur Heart J. 2015; 36 (35): 2373-2380.

3.     Novakovic RL, Toth G, Narayanan S, Zaidat OO. Retrievable stents, «stentrievers», for endovascular acute ischemic stroke therapy. Neurology. 2012; 79 (13 Suppl 1): 148–157.

4.     Arnaout OM, Rahme RJ, El Ahmadieh TY, et al. Past, present, and future perspectives on the endovascular treatment of acute ischemic stroke. Tech Vasc Interv Radiol. 2012; 15: 87-92.

5.     Koh JS, Lee SJ, Ryu CW, Kim HS. Safety and efficacy of mechanical thrombectomy with solitaire stent retrieval for acute ischemic stroke: A systematic review. J Neurointervention. 2012; 7: 1-9.

6.     Singh P, Kaur R, Kaur A. Endovascular treatment of acute ischemic stroke. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303.

7.     Goyal M, Yu AY, Menon BK, et al. Endovascular Therapy in Acute Ischemic Stroke. J Stroke. 2016; 47: 548-553.

8.     GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18(5): 439-458.



Aim: was to explore clinical efficacy and safety of two distal radial approach (DRA) types in primary percutaneous coronary interventions (PCI) in acute coronary syndrome (ACS) patients.

Materials and methods: 113 ACS patients with endovascular procedure that had been performed through DRA - met entry criteria. Standard DRA was performed within anatomic snuffbox in 82 patients (72,6%) and modified - on the dorsal surface of the palm (dorsopalmar type) in 31 patients (27,4%). Approach conversion was performed in 7 patients (6,2%). PCI on syndrome- related artery was performed in 94 patients (83,2%). On completion of PCI and final approach angiography, hemostasis was performed with bandage application for 6 hours. Hemostasis comfort was determined by 10 point verbal descriptor Gaston-Johansson scale. On the 5th-7th day after PCI, all patients underwent visual check, palpation and ultrasound duplex scan (UDS).

Results: procedure and fluoroscopy time, X-ray load, hemostasis comfort - didn't depend on DRA type. Examination, palpation, UDS performed on the 5th-7th day after PCI didn't reveal cases of forearm radial artery occlusion (RAO). Subcutaneous forearm hematoma (EASY III - IV) was registered in 3 cases (2,7%). RAO was registered in standard DRA group only in 4 cases (3,5%). There were no cases of access side RAO in dorsopalmar DRA group.

Conclusion: DRA modifications for PCI in ACS patients are valuable addition to classic radial approach. Dorsopalmar DRA can be considered as basic approach.



1.     Campeau L. Percutaneous radial artery approach for coronary angiography. Cathet Cardiovasc Diagn. 1989; 16:3-7.

2.     Kiemeneij F, Laarmann Gj, de Melker E. Transradial coronary artery angioplasty (Abstr). Circulation. 1993; 88: I-251.

3.     Ibanez B, James S, Agewall S. et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018; 39 (2): 119-77.

4.     Neumann F.J., Sousa-Uva M., Ahlsson A. et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2018; Aug. 25.

5.     Valgimigli M, Gagnor A, Calabro P. et al. MATRIX Investigators. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: A randomised multicentre trial. Lancet. 2015; 385:2465-2476.

6.     Bazemore E, Tift Man J, Problems and Complications of the Transradial Approach for Coronary Interventions: A Review Issue Number J Invasive Cardiol. 2005 Mar;17(3):156-9.

7.     Stawin J, Kubler P, Szczepanski A. et al. (2013). Radial artery occlusion after percutaneous coronary interventions - an underestimated issue. Postepy Kardiol Interwencyjnej. 2013 18; 9(4):353-61. Epub 2013 Nov 18.

8.     Avdikos G, Karatasakis A, Tsoumeleas A. et al. Radial artery occlusion after transradial coronary catheterization. Cardiovasc Diagn Ther. 2017; 7(3):305-316.

9.     Kotowycz MA, DГlavнk V. Radial artery patency after transradial catheterization. Circ Cardiovasc Interv. 2012; 5:127-33.

10.   Karpov YA, Samko AN, Buza VV. Coronary angioplasty and stenting. Moscow, 2010; 235 [In Russ].

11.   Babunashvili A, Dundua D. Recanalization and reuse of early occluded radial artery within 6 days after previous transradial diagnostic procedure. Catheter. Cardiovasc. Interv. 2011; 77 (4): 530-6.

12.   Kaledin AL, Kochanov IN, Seletskiy SS. et al. Peculiarities of arterial access in endovascular surgery in elderly patients. Uspekhi Gerontologii. 2014; 27 (1): 115-9 [In Russ].

13.   Kiemeneij F. Left distal transradial access in the anatomical snuffbox for coronary angiography (ldTRA) and interventions (ldTRI). EuroIntervention. 2017; 13 (7): 851-7.

14.   Al-Azizi KM, Lotfi AS. The distal left radial artery access for coronary angiography and intervention: a new era. Cardiovasc. Revasc. Med. 2018; Dec 26; 19(8S): 35-40.

15.   Valsecchi O, Vassileva A, Cereda AF. et al. Early clinical experience with right and left distal transradial access in the anatomical snuffbox in 52 consecutive patients. J. Invasive Cardiol. 2018; 30(6): 218-23.

16.   Soydan E, Akin M. Coronary angiography using the left distal radial approach - an alternative site to conventional radial coronary angiography. Anatol. J. Cardiol. 2018; 19: 243-248. Mar. 21.

17.   Manchurov VN, Orlov OS, Anisimov KV. et al. Distal transradial access for percutaneous coronary interventions in patients with acute coronary syndrome and ischemic heart disease. Endovasculyarnaya. khirurgiya. 2018; 5 (4): 438-44 [In Russ].

18.   Kaledin AL, Kochanov IN, Podmetin PS., et al. Distal part of the radial artery for endovascular interventions. Endоskulyarnaya khirurgiya. 2017; 4(2): 125-133 [In Russ].

19.   Amsterdam EA, Wenger NK, Brindis et al. (23 September 2014). "2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines". Circulation. 130 (25): e344-e426.

20.   Gaston-Johansson F, Albert M, Fagan et al. Similarities in pain descriptions of four different ethnic-culture groups. J Pain Symptom Manage. 1990; 5: 94-100.

21.   Bertrand OF. Acute forearm muscle swelling post transradial catheterization and compartment syndrome: prevention is better than treatment! Catheter Cardio Interv. 2010; 75:366-8.

22.   Radial access for percutaneous coronary procedure: relationship between operator expertise and complications. Clin Exp Emerg Med. 2018 Jun; 5(2): 95-99.

23.   Rafael J Ruiz-Salmeryna, Ramyn Moraa, Manuel Velez-Gimyna et al. Radial Artery Spasm in Transradial Cardiac Catheterization. Assessment of Factors Related to Its Occurrence, and of Its Consequences During Follow-Up. Revista Espanola de cardiologia. 2005; 58(5): 465610.



Aim: was to perform a retrospective comparative analysis of clinical and angiographic results of primary endovascular treatment of ischemic stroke in patients who had contraindications for adjuvant thrombolytic therapy, and results of applying standard pharmaco-invasive (thrombolysis and thrombus extraction) treatment.

Material and methods: angiography was performed in 61 patients. The main criterion for the selection of patients for cerebral angiography according to MSCT-angiography, was a confirmed occlusion of a large intracranial vessel (the internal carotid artery or the middle cerebral artery at M1-2 segment). After MSCT-angiography, in the absence of contraindications, (STT) systemic throbolytic therapy (Alteplaza in the standard dose) was started and patients were sent to an endovascular operation, where selective angiography of the syndrome-responsive artery was performed, followed by an endovascular procedure, according to standard procedure. For endovascular treatment, Penumbra Reperfusion catheters - ACE 68 , were used in combination with 3MAX catheters, or stent-retrievers (Trevo, PRESET, ERIC). In a number of cases, the use of retrievers was supplemented with an assisting thrombus aspiration («Solumbra» method). The criterion for the effectiveness of endovascular treatment was the achievement of blood flow in the syndrome-responsible artery TICI 2b - 3. 6 patients with lesion of distal segments of middle cerebral artery (M3-4) or with no occlusion of large intracranial occlusion were excluded from the study.

Results: all 55 patients who received endovascular treatment, retrospectively were divided into two groups depending on the performance of adjuvant STT Group of combined treatment (STT and endovascular procedure (EVP)) included 24 patients; 31 patients were included in the primary EVP group.

Conclusions: basing on results of the study it can be supposed that primary endovascular treatment of ischemic stroke without thrombolysis can provide comparable efficacy and safety of treatment.



1.      Bhatia R, Hill MD, Shobha N, Menon B, Bal S, Kochar P Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke. 2010; 41:2254-2258.

2.      Coutinho JM, Liebeskind DS, Slater LA, Nogueira RG, Clark W, Dбvalos A. Combined intravenous thrombolysis and thrombectomy vs thrombectomy alone for acute ischemicstroke: a pooled analysis of the SWIFT and STAR studies. JAMA Neurol. 2017;74:268-274.

3.      Broeg-Morvay A, Mordasini P, Bernasconi C, Bьhlmann M, Pult F, Arnold M. Direct mechanical intervention versus combined intravenous and mechanical intervention in large artery anterior circulation stroke: a matched-pairs analysis. Stroke. 2016; 47:1037-1044.

4.      Bellwald S, Weber R, Dobrocky T, Nordmeyer H, et al Direct Mechanical Intervention Versus Bridging Therapy in Stroke Patients Eligible for Intravenous Thrombolysis: A Pooled Analysis of 2 Registries. Stroke. 2017 Nov 7.

5.      Merlino, G., Sponza, M., Petralia, B. et al. Short and long-term outcomes after combined intravenous thrombolysis and mechanical thrombectomy versus direct mechanical thrombectomy: a prospective single-center study. J Thromb Thrombolysis. 2017; 44: 203.

6.      Guedin P, Larcher A, Decroix JP, Labreuche J, Dreyfus JF, Evrard S. Prior IV thrombolysis facilitates mechanical thrombectomy in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2015; 24:952-957.

7.      Behme D, Kabbasch C, Kowoll A, Dorn F, Liebig T, Weber W, Mpotsaris A. Intravenous thrombolysis facilitates successful recanalization with stent-retriever mechanical thrombectomy in middle cerebral artery occlusions. J Stroke Cerebrovasc Dis. 2016; 25:954-959.

8.      Desilles JP, Loyau S, Syvannarath V, Gonzalez-Valcarcel J, Cantier M, Louedec L. Alteplase reduces downstream microvascular thrombosis and improves the benefit of large artery recanalization in stroke. Stroke. 2015; 46:3241-3248.

9.      Kass-Hout T, Kass-Hout O, Mokin M, Thesier DM, Yashar P, Orion D. Is bridging with intravenous thrombolysis of any benefit in endovascular therapy for acute ischemic stroke? WorldNeurosurg. 2014; 82:e453-458.



This article spotlights problems of diagnostic and treatment of rare vascular complication: false aneurysm of transplanted kidney artery We describe a case of successful treatment using stent-assisted aneurysm embolization. Our case is illustrated with ultrasound, computed tomography and angiographic images and 30-day follow-up data.



1.      Tomilina N., Bikbov B. Sostojanie zamestitel'noj terpapii pri hronicheskoj pochechnoj nedostatochnosti v Rossii v 1998-2011 gg. (po dannym registra Rossijskogo dializnogo obshhestva) [The status of substitutive therapy in chronic renal insufficiency in Russia in 1998-2011. (according to the register of the Russian Dialysis Society).]. Vestnik transplantologii i iskusstvennyh organov. 2015; 17(1):35-58 [In Russ].

2.      Streeter E.H., Little D.M., Cranston D.W. and Morris P.J. The urological complications of renal transplantation: a series of 1535 patients. BJU International. 2002; 90: 627634.

3.      Verstova A.I., Kokov L.S., Parhomenko M.V., Pinchuk A.V. Klinicheskij sluchaj jembolizacii lozhnoj anevrizmy arterii pochechnogo transplantata Materialy VII nauch.-obr. foruma 2015 g [Clinical case of embolization of a false aneurysm of an artery of a transplanted kidney.]. Rossijskij Jelektronnyj Zhurnal Luchevoj Diagnostiki = Russian Electronic Journal of Radiology (REJR). 2015; 5(2) Pril.:231-232[ In Russ].

4.      Matas A.J., Payne W.D., Sutherland DER, et al. 2,500 Living Donor Kidney Transplants: A Single-Center Experience. Annals of Surgery. 2001; 234(2):149-164.

5.      Orlic P., Vukas D., Curuvija D., Markic D., Merlak-Prodan Z., Maleta I., Zivcic-Cosic S., Orlic L., Blecich G., Valencic M., Spanjol J., Budiselic B. Pseudoaneurysm after renal transplantation. Acta Med Croatica. 2008; 62(1):86-9.

6.      Fujikata S., Tanji N., Iseda T., Ohoka H., Yokoyama M. Mycotic aneurysm of the renal transplant artery. Int J Urol. 2006;13: 820e3.

7.      Al-Wahaibi K.N., Aquil S., Al-Sukaiti R., Al-Riyami D., Al-Busaidi Q. Transplant Renal Artery False Aneurysm: Case Report and Literature Review. Oman Medical Journal. 2010; 25(4):306-310.

8.      Bracale U.M., Santangelo M., Carbone F., Del Guercio L., Maurea S., Porcellini M., Bracale G. Anastomotic pseudoaneurysm complicating renal transplantation:treatment options. Eur J Vasc Endovasc Surg. 2010 May; 39(5):565-8.

9.      Dimitroulis D., Bokos J., Zavos G., Nikiteas N.Karidis P., Katsaronis P., et al. Vascular complications in renal transplantation: a single-center experience in 1367 renal transplantations and review of the literature. Transplant Proc. 2009; 41:1609e14.

10.    Burkey S.H., Vazquez M.A., Valentine R.J. De novo renal artery aneurysm presenting 6 years after transplantation: a complication of recurrent arterial stenosis? J Vasc Surg. 2000; Aug;32(2):388-391 10.1067/mva.2000. 106943.

11.    McIntosh B.C., Bakhos C.T., Sweeney T.F., DeNa- tale R.W., Ferneini A.M. Endovascular repair of transplant nephrectomy external iliac artery pseudoaneurysm. Conn Med. 2005; Sep;69(8):465-466.

12.    Bracale U.M., Carbone F., del Guercio L., Viola D., D’Armiento F.P., Maurea S. et al. External iliac artery pseudoaneurysm complicating renal transplantation. Interact Cardiovasc Thorac Surg. 2009. Jun; 8(6):654-660 10.1510/icvts.2008.200386.

13.    Asztalos L., Olvaszto' S., Fedor R., Szabo' L., Bala 'zs G., Luka' cs G. Renal artery aneurysm at the anastomosis after kidney transplantation. Transplant Proc. 2006; 38:2915e8.



Article describes a case report of successful treatment of coronary artery perforation using handmade stent-graft, ex tempore made of coronary balloon and two bare-metal stents. Article also reports results of follow-up, including control angiography and optical coherence tomography 3 months later. 



1.     Ellis S.G., Ajluni S., Arnold A.Z., Popma J.J., Bittl J.A., Eigler N.L. et al. Increased coronary perforation in the new device era. Incidence, classification, management, and outcome. Circulation. 1994; 90(6):2725-30.

2.     Shirakabe A., Takano H., Nakamura S., Kikuchi A., Sasaki A., Yamamoto E. et al. Coronary perforation during percutaneous coronary intervention. Int Heart J. 2007; 48(1):1-9.

3.     Lansky A.J., Yang YM., Khan Y, Costa R.A., Pietras C., Tsuchiya Y et al. Treatment of coronary artery perforations complicating percutaneous coronary intervention with a polytetrafluoroethylene-covered stent graft. Am J Cardiol. 2006; 98(3): 370-4.

4.     Sarli B., Baktir A.O., Saglam H., Kurtul S., Dogan Y., Aring H. Successful Treatment of Coronary Artery Perforation with Hand-Made Covered Stent. Erciyes Med J. 2013; 35(3):164-6 • DOI: 10.5152/etd.2013.20.

5.     Copeland K.A., Hopkins J.T., Weintraub W.S., Rahman E. Long-term follow-up of polytetrafluoroethylene-covered stents implanted during percutaneous coronary intervention for management of acute coronary perforation. Catheter Cardiovasc Interv. 2012; 80(1):53-7. (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы