Сайт предназначен для врачей
Поиск:
Всего найдено: 3

 

Аннотация:

В работе рассмотрен современный коммерческий способ производства самого востребованного в онкологии радиофармацевтического диагностического лекарственного средства 18F-Фтордезоксиглюкозы (2-фтор,18F-2-дезокси-D-глюкоза, 18F-ФДГ), представлены технологические стадии и операции синтеза, процедуры контроля качества, кратко описаны требования, предъявляемые к упаковке и маркировке данного радиофармацевтического препарата.

 

Список литературы

1.      Kam Leung. [18F]Fluoro-2-deoxy-2-D-glucose in Molecular Imaging and Contrast Agent Database (MICAD). National Center for Biotechnology Information, NLM, NIH, Bethesda, MD. 2005.

2.      Min-Fu Yang, Diwakar Jain, Zuo-Xiang He. 18F-FDG Cardiac Studies for Identifying Ischemic Memory. Curr Cardiovasc Imaging Rep. 2012; Dec, 5:383-389.

3.      Ghesani M., Depuey E. G., Rozanski A. Role of F-18 FDG positron emission tomography (PET) in the assessment of myocardial viability. Echocardiography. 2005 Feb; 22(2): 165-77.

4.      Nose H., Otsuka H., Otomi Y et al. Evaluation of normal physiologic left ventricular myocardial 18F-FDG uptake at fasting state. European Congress of Radiology. 2012. Vienna, Austria. URL: http://posterng.netkey.at/esr/ viewing/index.php?module=viewing_poster&doi=10.1594 /ecr2012/C-1192 2012.

5.      Dong Soo Lee, Sang Kun Lee, Myung Chul Lee. Functional Neuroimaging in Epilepsy: FDG PET and Ictal SPECT. Korean Med Sci. 2001;16: 689-96.

6.      Teune L. K., Bartels A. L., Leenders K. L. FDG-PET Imaging in Neurodegenerative Brain Diseases // Functional Brain Mapping and the Endeavor to Understand the Working Brain edited by Francesco Signorelli and Domenico Chirchiglia, 2013.

7.      Sanchez-Catasis C. A., Vallez, Garcha D., Le Riverend Morales E., Galvizu Sбnchez R. Traumatic Brain Injury: Nuclear Medicine Neuroimaging .PET and SPECT in Neurology. 2014; 923-946.

8.      Masangkay N., Basu S., Moghbel M. et al. Brain 18F-FDG-PET characteristics in patients with paraneoplastic neurological syndrome and its correlation with clinical and MRI findings. Nucl Med Commun. 2014 Oct; 35 (10): 1038-46.

9.      Статистика злокачественных новообразований в России и странах СНГ в 2012 г. Под ред. М.И. Давыдова, Е.М. Аксель. Москва, 2014; 226 с.

10.    Jones S. C., Alavi A., Christman D. et al. The radiation dosimetry of 2 [F-18]fluoro-2-deoxy-D-glucose in man. J Nucl Med. 1982; 23, 613-617.

11.    Kuwabara H., Gjedde A. Measurements of glucose phosphorylation with FDG and PET are not reduced by dephosphorylation of FDG-6-phosphate. J Nucl Med. 1991 Apr; 32(4): 692-8.

12.    Data are from International Commission on Radiological Protection. Radiation Dose to Patients from Radiopharmaceuticals. St. Louis, MO. Elsevier; 2000:49. ICRP publication 80.

13.    Ido T., Wan C. N., Fowler J. S. Fluorination with F2: convenient synthesis of 2-deoxy-2-fluoro-d-glucose. J Org Chem. 1977; 42: 2341-2.

14.    Hamacher K., Coenen H. H., Stacklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]- fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986; 27: 235-8.

15.    Toorongian S. A., Mulholland G. K., Jewett D. M. et al. Routine production of 2-deoxy-2-[18F]fluoro-D- glucose by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin. Int J Rad Appl Instrum B. 1990; 17 (3): 273-9.

16     Нормы радиационной безопасности (НРБ- 99/2009). СП 2.6.1.2523-09.

17.    Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010). СП 2.6.12612-10.

18.    СанПиН 2.6.1.3288-15 «Гигиенические требования по обеспечению радиационной безопасности при подготовке и проведении позитронной эмиссионной томографии».

19.    N.A. Gomzina, D.A. Vasil’ev, R.N. Krasikova. Optimization of Automated Synthesis of 2-[18F]Fluoro- 2-deoxy-D-glucose Involving Base Hydrolysis. Radiochemistry. 2002; 44 (4): 403-409.

20.    Gopal B. Saha. Basics of PET Imaging: Physics, Chemistry and Regulations. - 3th ed. - New York: Springer International Publishing, 2016; 165.

Аннотация:

Со времени открытия в 1895 г рентгеновских лучей и внедрения их в общую практику стандартная рентгенография остается наиболее доступным методом обследования пациентов, в том числе с заболеваниями позвоночника. При стандартном рентгеновском исследовании позвоночного столба все анатомические структуры, расположенные на различной глубине и разном расстоянии, проецируются на рентгеновской пленке или экране в виде плоскостного изображения. С целью нивелировать данные недостатки и улучшить визуализацию были разработаны различные томографические методики. Наиболее современной и перспективной является многосрезовая линейная томография (томосинтез), при которой за один проход рентгеновской трубки получается серия срезов. Цифровую многосрезовую линейную рентгеновскую томографию в мировой практике, как правило, применяют для исследования молочных желез, легких. В статье приведены данные о различных рентгеновских видах томографии при обследовании пациентов с туберкулезным спондилитом.

 

 

 

 

Аннотация:

Развитие технологии многослойного цифрового томосинтеза позволяет получить более точное изображение внутренних органов и тканей по сравнению с другими традиционными рентгенологическими методами исследования, что достигается возможностью послойной визуализации выбранной анатомической области.

Цель: проанализировать возможности цифрового томосинтеза в оценке структур легких при нормальной рентгеноанатомии органов грудной полости.

Материалы и методы: в исследование были включены пациенты без патологических изменений органов грудной полости, которым был выполнен цифровой томосинтез в прямой и боковой проекциях.

Результаты: на основании проанализированных данных, указаны особенности нормальной рентгеноанатомии органов грудной полости при использовании методики цифрового томосинтеза. Схематично уточнено долевое, сегментарное строение лёгких, а также ход воздухопроводящих путей при послойной визуализации. Описаны преимущества и недостатки метода в изображении лёгких и структур средостения.Заключение: использование цифрового томосинтеза в оценке органов грудной клетки позволяет более детально определить основные анатомические структуры легких, благодаря послойной визуализации и более высокому пространственному разрешению.  

 

Список литературы

1.     Galea A. et al. Practical applications of digital tomosynthesis of the chest. Clinical radiology. 2014; 69(4): 424-430.

2.     de Koste J. R. S. et al. Digital tomosynthesis (DTS) for verification of target position in early stage lung cancer patients. Medical physics. 2013; 40(9): 091904.

3.     Dobbins III J. T. et al. Digital tomosynthesis of the chest for lung nodule detection: interim sensitivity results from an ongoing NIH-sponsored trial. Medical physics. 2008; 35(6): 2554-2557.

4.     Vikgren J. et al. Comparison of Chest Tomosynthesis and Chest Radiography for Detection of Pulmonary Nodules: Human Observer Study of Clinical Cases 1. Radiology. 2008; 249(3): 1034-1041.

5.     Quaia E. et al. Digital tomosynthesis as a problemsolving imaging technique to confirm or exclude potential thoracic lesions based on chest X-ray radiography. Academic radiology. 2013; 20(5): 546-553.

6.     Jung H. N. et al. Digital tomosynthesis of the chest: utility for detection of lung metastasis in patients with colorectal cancer. Clinical radiology. 2012; 67(3): 232-238.

7.     Никитин М.М. Возможности цифрового томосинтеза в диагностике различных форм туберкулeза лёгких. REJR. 2016; 6 (1): 35-47.

8.     Ковач Ф. мл., Жебек З. Рентгеноанатомические основы исследования лёгких. Будапешт. 1958; 364 C.

9.     Трофимова Т.Н. ред. Лучевая анатомия человека. СПб.: Издательский дом СПбМАПО. 2005; 496 c.  

10.   Сапин М.Р. ред. Анатомия человека. Москва, М.: Медицина. 2001; 640 c. 

11.   Синельников Р.Д., Синельников Я.Р. Атлас анатомии человека. М.: Медицина. 1996; 344 c.

12.   Коков Л.С. ред. Атлас сравнительной рентгенохирургической анатомии. М.: Радиология-Пресс. 2012; 388 c.

 

 

 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы